Krittakom Srijiranon, Narissara Eiamkanitchat, Sakgasit Ramingwong, K. Cosh, L. Ramingwong
{"title":"Investigation of PM10 prediction utilizing data mining techniques: Analyze by topic","authors":"Krittakom Srijiranon, Narissara Eiamkanitchat, Sakgasit Ramingwong, K. Cosh, L. Ramingwong","doi":"10.1002/widm.1423","DOIUrl":null,"url":null,"abstract":"Coarse particulate matter (PM10), the inhalable particles with an aerodynamic diameter smaller than 10 micrometers are one of the major air pollutions that affect human health. Over the previous decade, a number of researchers applied various data mining techniques to create a temporal prediction model. This study reviews and discusses 100 research articles in computer science and environmental science coming from the Scopus database. The three processes of data mining techniques, including data preparation, model creation, and model evaluation for prediction PM10 are highlighted. A summary of the overall process directions of data mining as well as their output are revealed. Additionally, recommendations for future research are identified.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"64 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1423","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Coarse particulate matter (PM10), the inhalable particles with an aerodynamic diameter smaller than 10 micrometers are one of the major air pollutions that affect human health. Over the previous decade, a number of researchers applied various data mining techniques to create a temporal prediction model. This study reviews and discusses 100 research articles in computer science and environmental science coming from the Scopus database. The three processes of data mining techniques, including data preparation, model creation, and model evaluation for prediction PM10 are highlighted. A summary of the overall process directions of data mining as well as their output are revealed. Additionally, recommendations for future research are identified.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.