A Statistical Model for Recreational Trails in Aerial Images

Andrew Predoehl, S. Morris, Kobus Barnard
{"title":"A Statistical Model for Recreational Trails in Aerial Images","authors":"Andrew Predoehl, S. Morris, Kobus Barnard","doi":"10.1109/CVPR.2013.50","DOIUrl":null,"url":null,"abstract":"We present a statistical model of aerial images of recreational trails, and a method to infer trail routes in such images. We learn a set of text ons describing the images, and use them to divide the image into super-pixels represented by their text on. We then learn, for each text on, the frequency of generating on-trail and off-trail pixels, and the direction of trail through on-trail pixels. From these, we derive an image likelihood function. We combine that with a prior model of trail length and smoothness, yielding a posterior distribution for trails, given an image. We search for good values of this posterior using a novel stochastic variation of Dijkstra's algorithm. Our experiments, on trail images and ground truth collected in the western continental USA, show substantial improvement over those of the previous best trail-finding method.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"45 1","pages":"337-344"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a statistical model of aerial images of recreational trails, and a method to infer trail routes in such images. We learn a set of text ons describing the images, and use them to divide the image into super-pixels represented by their text on. We then learn, for each text on, the frequency of generating on-trail and off-trail pixels, and the direction of trail through on-trail pixels. From these, we derive an image likelihood function. We combine that with a prior model of trail length and smoothness, yielding a posterior distribution for trails, given an image. We search for good values of this posterior using a novel stochastic variation of Dijkstra's algorithm. Our experiments, on trail images and ground truth collected in the western continental USA, show substantial improvement over those of the previous best trail-finding method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航拍影像中休闲步道的统计模型
提出了一种休闲步道航拍图像的统计模型,并提出了一种从航拍图像中推断步道路线的方法。我们学习一组描述图像的文本,并使用它们将图像划分为由其文本表示的超像素。然后我们学习,对于每一个文本,生成轨迹上和轨迹外像素的频率,以及轨迹通过轨迹上像素的方向。由此,我们推导出图像似然函数。我们将其与轨迹长度和平滑度的先验模型相结合,得到给定图像的轨迹后验分布。我们使用Dijkstra算法的一种新的随机变化来搜索这个后验的良好值。我们在美国西部大陆采集的路径图像和地面真实情况的实验表明,与以前的最佳路径寻找方法相比,我们的方法有了很大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segment-Tree Based Cost Aggregation for Stereo Matching Event Retrieval in Large Video Collections with Circulant Temporal Encoding Articulated and Restricted Motion Subspaces and Their Signatures Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation Learning Video Saliency from Human Gaze Using Candidate Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1