{"title":"An asymptotic threshold of sufficient randomness for causal inference","authors":"B. Knaeble, B. Osting, P. Tshiaba","doi":"10.1002/sta4.609","DOIUrl":null,"url":null,"abstract":"For sensitivity analysis with stochastic counterfactuals, we introduce a methodology to characterize uncertainty in causal inference from natural experiments. Our sensitivity parameters are standardized measures of variation in propensity and prognosis probabilities, and one minus their geometric mean is an intuitive measure of randomness in the data generating process. Within our latent propensity‐prognosis model, we show how to compute, from contingency table data, a threshold, , of sufficient randomness for causal inference. If the actual randomness of the data generating process is greater than this threshold, then causal inference is warranted. We demonstrate our methodology with two example applications.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.609","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
For sensitivity analysis with stochastic counterfactuals, we introduce a methodology to characterize uncertainty in causal inference from natural experiments. Our sensitivity parameters are standardized measures of variation in propensity and prognosis probabilities, and one minus their geometric mean is an intuitive measure of randomness in the data generating process. Within our latent propensity‐prognosis model, we show how to compute, from contingency table data, a threshold, , of sufficient randomness for causal inference. If the actual randomness of the data generating process is greater than this threshold, then causal inference is warranted. We demonstrate our methodology with two example applications.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.