R. Kaindl, D. Hägele, M. Carnahan, R. Lovenich, D. Chemla
{"title":"Terahertz probes of transient conducting and insulating phases in quasi-2D electron-hole gases","authors":"R. Kaindl, D. Hägele, M. Carnahan, R. Lovenich, D. Chemla","doi":"10.1109/ICIMW.2004.1422184","DOIUrl":null,"url":null,"abstract":"We employ ultrafast terahertz (THz) pulses to study the dynamical interplay of optically-induced excitons and unbound electron-hole pairs in GaAs/AlGaAs quantum wells. A distinct low-energy oscillator appears upon resonant excitation of heavy-hole excitons, linked to transitions between their internal degrees of freedom. Time-resolving changes in the THz conductivity, we can observe dynamical transitions between conducting and insulating phases as excitons form or ionize on ultrashort timescales.","PeriodicalId":13627,"journal":{"name":"Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMW.2004.1422184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We employ ultrafast terahertz (THz) pulses to study the dynamical interplay of optically-induced excitons and unbound electron-hole pairs in GaAs/AlGaAs quantum wells. A distinct low-energy oscillator appears upon resonant excitation of heavy-hole excitons, linked to transitions between their internal degrees of freedom. Time-resolving changes in the THz conductivity, we can observe dynamical transitions between conducting and insulating phases as excitons form or ionize on ultrashort timescales.