Modelling PM2.5 for Data-Scarce Zone of Northwestern India using Multi Linear Regression and Random Forest Approaches

IF 2.7 Q1 GEOGRAPHY Annals of GIS Pub Date : 2023-02-27 DOI:10.1080/19475683.2023.2183523
V. Sharma, Swagata Ghosh, S. Dey, Sultan Singh
{"title":"Modelling PM2.5 for Data-Scarce Zone of Northwestern India using Multi Linear Regression and Random Forest Approaches","authors":"V. Sharma, Swagata Ghosh, S. Dey, Sultan Singh","doi":"10.1080/19475683.2023.2183523","DOIUrl":null,"url":null,"abstract":"ABSTRACT PM2.5 (Particulate matter with aerodynamic diameter <2.5 m) concentrations above permissible limit causes air quality deterioration and hampers human health. Due to the lack of a good spatial network of ground-based PM monitoring sites and systematic checking, the availability of continuous data of PM2.5 concentrations at macro and meso scales is restricted. Present research estimated PM2.5 concentrations at high (1 km) resolution over Faridabad, Ghaziabad, Gurugram and Gautam Buddha Nagar, a data-scarce zone of the highly urbanized area of northwestern India for the year 2019 using Random Forest (RF), Multi-Linear Regression (MLR) models and Hybrid Model combining RF and MLR. It included Aerosol Optical Depth (AOD), meteorological data and limited in-situ data of PM2.5. For validation, the correlation coefficient (R), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE) and Relative Prediction Error (RPE) have been utilized. The hybrid model estimated PM2.5 with a greater correlation (R = 0.865) and smaller RPE (22.41%) compared to standalone MLR/RF models. Despite the inadequate in-situ data, Greater Noida has been found to have a high correlation (R = 0.933) and low RPE (32.13%) in the hybrid model. The most polluted seasons of the year are winter (137.28 µgm−3) and post-monsoon (112.93 µgm−3), whereas the wet monsoon (44.56 µgm−3) season is the cleanest. The highest PM2.5 level was recorded in Noida followed by Ghaziabad, Greater Noida and Faridabad. The findings of the present research will provide an input dataset for air pollution exposure risk research in parts of northwestern India with sparse monitoring data.","PeriodicalId":46270,"journal":{"name":"Annals of GIS","volume":"135 1","pages":"415 - 427"},"PeriodicalIF":2.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of GIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475683.2023.2183523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT PM2.5 (Particulate matter with aerodynamic diameter <2.5 m) concentrations above permissible limit causes air quality deterioration and hampers human health. Due to the lack of a good spatial network of ground-based PM monitoring sites and systematic checking, the availability of continuous data of PM2.5 concentrations at macro and meso scales is restricted. Present research estimated PM2.5 concentrations at high (1 km) resolution over Faridabad, Ghaziabad, Gurugram and Gautam Buddha Nagar, a data-scarce zone of the highly urbanized area of northwestern India for the year 2019 using Random Forest (RF), Multi-Linear Regression (MLR) models and Hybrid Model combining RF and MLR. It included Aerosol Optical Depth (AOD), meteorological data and limited in-situ data of PM2.5. For validation, the correlation coefficient (R), Root-Mean-Square Error (RMSE), Mean Absolute Error (MAE) and Relative Prediction Error (RPE) have been utilized. The hybrid model estimated PM2.5 with a greater correlation (R = 0.865) and smaller RPE (22.41%) compared to standalone MLR/RF models. Despite the inadequate in-situ data, Greater Noida has been found to have a high correlation (R = 0.933) and low RPE (32.13%) in the hybrid model. The most polluted seasons of the year are winter (137.28 µgm−3) and post-monsoon (112.93 µgm−3), whereas the wet monsoon (44.56 µgm−3) season is the cleanest. The highest PM2.5 level was recorded in Noida followed by Ghaziabad, Greater Noida and Faridabad. The findings of the present research will provide an input dataset for air pollution exposure risk research in parts of northwestern India with sparse monitoring data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用多元线性回归和随机森林方法模拟印度西北部数据稀缺地区的PM2.5
PM2.5(空气动力学直径<2.5 m的颗粒物)浓度超过允许限值会导致空气质量恶化,危害人体健康。由于缺乏良好的地面PM监测点空间网络和系统的检测,PM2.5浓度在宏观和中尺度上的连续数据的可用性受到限制。目前的研究使用随机森林(RF)、多元线性回归(MLR)模型和结合RF和MLR的混合模型估算了2019年印度西北部高度城市化地区的数据稀缺区法里达巴德、加兹阿巴德、古鲁格拉姆和高塔姆佛纳加尔的高(1公里)分辨率PM2.5浓度。它包括气溶胶光学深度(AOD)、气象数据和有限的PM2.5原位数据。采用相关系数(R)、均方根误差(RMSE)、平均绝对误差(MAE)和相对预测误差(RPE)进行验证。与独立MLR/RF模型相比,混合模型估算PM2.5的相关性更大(R = 0.865), RPE更小(22.41%)。尽管现场数据不足,但在混合模型中发现Greater Noida具有高相关性(R = 0.933)和低RPE(32.13%)。一年中污染最严重的季节是冬季(137.28µgm−3)和季风后(112.93µgm−3),而湿季风季节(44.56µgm−3)最干净。PM2.5水平最高的是诺伊达,其次是加济阿巴德、大诺伊达和法里达巴德。本研究的结果将为监测数据稀少的印度西北部部分地区的空气污染暴露风险研究提供一个输入数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of GIS
Annals of GIS Multiple-
CiteScore
8.30
自引率
2.00%
发文量
31
期刊最新文献
Zero watermarking algorithm for BIM data based on distance partitioning and local feature Controlling for spatial confounding and spatial interference in causal inference: modelling insights from a computational experiment Application of GIS and fuzzy sets to small-scale site suitability assessment for extensive brackish water aquaculture Revealing intra-urban hierarchical spatial structure through representation learning by combining road network abstraction model and taxi trajectory data The time- and distance-decay effects of hurricane relevancy on social media: an empirical study of three hurricanes in the United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1