Analysis of Video Forensics System for Detection of Gun, Mask and Anomaly Using Soft Computing Techniques

S. K. Nanda, D. Ghai, P. Ingole
{"title":"Analysis of Video Forensics System for Detection of Gun, Mask and Anomaly Using Soft Computing Techniques","authors":"S. K. Nanda, D. Ghai, P. Ingole","doi":"10.13052/jcsm2245-1439.1143","DOIUrl":null,"url":null,"abstract":"The video forensics world is a developing network of experts associated with the computerized video forensics industry. With quickly developing innovation, the video turned out to be the most significant weapon in the battle against individuals who violate the law by catching them in the act. Proof caught on video is viewed as more dependable, more exact, and more persuading than observer declaration alone. But, proof can be effortlessly tempered by utilizing programming. Video forensics examination, tells us about the accuracy of the input video. It has become a challenge for law enforcement agencies to deal with the increasing violence rate which involves the use of masks and weapons. The identification of a person becomes difficult with the use of face masks. The proposed method uses an efficient technique that is YOLO to detect guns, masks and suspicious persons from a video by extracting frames and features. It further compares the obtained frame with the available images in the dataset and generates output with bounding boxes detecting guns, masks and suspicious persons. This paper also examined the domain of video forensics and its outcomes. Experimental results show that the proposed method outperforms the existing techniques tested on different datasets. The precision for YOLO design for guns and masks is 100% and 75% respectively. The precision for customized CNN engineering for guns and face masks is 61.54% and 61.5% respectively. Execution measurements for both models have shown that the YOLO design outperformed the customized CNN with its presentation.","PeriodicalId":37820,"journal":{"name":"Journal of Cyber Security and Mobility","volume":"16 1","pages":"549-574"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cyber Security and Mobility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jcsm2245-1439.1143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The video forensics world is a developing network of experts associated with the computerized video forensics industry. With quickly developing innovation, the video turned out to be the most significant weapon in the battle against individuals who violate the law by catching them in the act. Proof caught on video is viewed as more dependable, more exact, and more persuading than observer declaration alone. But, proof can be effortlessly tempered by utilizing programming. Video forensics examination, tells us about the accuracy of the input video. It has become a challenge for law enforcement agencies to deal with the increasing violence rate which involves the use of masks and weapons. The identification of a person becomes difficult with the use of face masks. The proposed method uses an efficient technique that is YOLO to detect guns, masks and suspicious persons from a video by extracting frames and features. It further compares the obtained frame with the available images in the dataset and generates output with bounding boxes detecting guns, masks and suspicious persons. This paper also examined the domain of video forensics and its outcomes. Experimental results show that the proposed method outperforms the existing techniques tested on different datasets. The precision for YOLO design for guns and masks is 100% and 75% respectively. The precision for customized CNN engineering for guns and face masks is 61.54% and 61.5% respectively. Execution measurements for both models have shown that the YOLO design outperformed the customized CNN with its presentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于软计算技术的枪支、掩码和异常检测视频取证系统分析
视频取证世界是一个与计算机视频取证行业相关的专家发展网络。随着创新的迅速发展,视频被证明是打击违法行为的最重要的武器。视频证据被认为比单独的观察员声明更可靠、更准确、更有说服力。但是,通过使用编程可以毫不费力地缓和证明。视频取证检验,告诉我们输入视频的准确性。对于执法机构来说,应对日益增加的暴力率已成为一项挑战,其中涉及使用面具和武器。使用口罩后,识别一个人变得很困难。该方法采用了一种高效的YOLO技术,通过提取帧和特征来检测视频中的枪支、面具和可疑人员。它进一步将得到的帧与数据集中的可用图像进行比较,并生成带有检测枪支、面具和可疑人员的边界框的输出。本文还研究了视频取证领域及其成果。实验结果表明,该方法在不同数据集上的性能优于现有的方法。枪口和面罩的YOLO设计精度分别为100%和75%。枪支和口罩定制CNN工程精度分别为61.54%和61.5%。两种模型的执行测量表明,YOLO设计的表现优于定制CNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cyber Security and Mobility
Journal of Cyber Security and Mobility Computer Science-Computer Networks and Communications
CiteScore
2.30
自引率
0.00%
发文量
10
期刊介绍: Journal of Cyber Security and Mobility is an international, open-access, peer reviewed journal publishing original research, review/survey, and tutorial papers on all cyber security fields including information, computer & network security, cryptography, digital forensics etc. but also interdisciplinary articles that cover privacy, ethical, legal, economical aspects of cyber security or emerging solutions drawn from other branches of science, for example, nature-inspired. The journal aims at becoming an international source of innovation and an essential reading for IT security professionals around the world by providing an in-depth and holistic view on all security spectrum and solutions ranging from practical to theoretical. Its goal is to bring together researchers and practitioners dealing with the diverse fields of cybersecurity and to cover topics that are equally valuable for professionals as well as for those new in the field from all sectors industry, commerce and academia. This journal covers diverse security issues in cyber space and solutions thereof. As cyber space has moved towards the wireless/mobile world, issues in wireless/mobile communications and those involving mobility aspects will also be published.
期刊最新文献
Network Malware Detection Using Deep Learning Network Analysis An Efficient Intrusion Detection and Prevention System for DDOS Attack in WSN Using SS-LSACNN and TCSLR Update Algorithm of Secure Computer Database Based on Deep Belief Network Malware Cyber Threat Intelligence System for Internet of Things (IoT) Using Machine Learning Deep Learning Based Hybrid Analysis of Malware Detection and Classification: A Recent Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1