Oxidation of Tetracaine Hydrochloride by Chloramine-B in Acid Medium: Kinetic Modeling

J. P. Shubha, Puttaswamy
{"title":"Oxidation of Tetracaine Hydrochloride by Chloramine-B in Acid Medium: Kinetic Modeling","authors":"J. P. Shubha, Puttaswamy","doi":"10.1155/2014/238984","DOIUrl":null,"url":null,"abstract":"Tetracaine hydrochloride (TCH) is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on , shows fractional–order dependence on , and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced.","PeriodicalId":7371,"journal":{"name":"Advances in Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/238984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Tetracaine hydrochloride (TCH) is one of the potent local anaesthetics. A kinetic study of oxidation of tetracaine hydrochloride by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried in HClO4 medium at 303 K. The rate shows first-order dependence on , shows fractional–order dependence on , and is self-governing on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increased the rate. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction was found to be 1 : 5 and the oxidation products were identified by spectral analysis. The conjugate free acid C6H5SO2NHCl of CAB is postulated as the reactive oxidizing species. The observed results have been explained by plausible mechanism and the related rate law has been deduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氯胺- b在酸性介质中氧化盐酸丁卡因:动力学模拟
盐酸丁卡因是一种有效的局部麻醉剂。本文研究了n -氯苯磺酰胺钠(chloramine-B或CAB)在HClO4介质中303 K氧化盐酸丁卡因的动力学。反应速率对酸浓度表现为一阶依赖,对酸浓度表现为分数阶依赖,对酸浓度表现为自自治。加入甲醇后,介质介电常数降低,反应速率提高。离子强度的变化和苯磺酰胺或NaCl的加入对反应速率无显著影响。在不同温度下对反应进行了研究,并对活化参数进行了评价。该反应的化学计量比为1:5,并通过光谱分析对氧化产物进行了鉴定。假定CAB的共轭游离酸C6H5SO2NHCl为活性氧化物质。对观测结果进行了合理的机理解释,并推导出相应的速率定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solution of the Rovibrational Schrödinger Equation of a Molecule Using the Volterra Integral Equation Enhancement of Electrochemical Performance of Bilirubin Oxidase Modified Gas Diffusion Biocathode by Porphyrin Precursor Organic Compounds Based on (E)-N-Aryl-2-ethene-sulfonamide as Microtubule Targeted Agents in Prostate Cancer: QSAR Study Methylene Blue Photocatalytic Degradation under Visible Irradiation on In2S3 Synthesized by Chemical Bath Deposition Synthesis and Characterization of System In(O,OH)S/i-ZnO/n+-ZnO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1