Inhibitory Effects of Novel AP-1 Decoy Oligodeoxynucleotides on Vascular Smooth Muscle Cell Proliferation In Vitro and Neointimal Formation In Vivo

J. Ahn, R. Morishita, Y. Kaneda, Sang-Jun Lee, K. Kwon, Se-Young Choi, Ki‐Up Lee, J. Park, I. Moon, Jong-Gu Park, M. Yoshizumi, Y. Ouchi, I. Lee
{"title":"Inhibitory Effects of Novel AP-1 Decoy Oligodeoxynucleotides on Vascular Smooth Muscle Cell Proliferation In Vitro and Neointimal Formation In Vivo","authors":"J. Ahn, R. Morishita, Y. Kaneda, Sang-Jun Lee, K. Kwon, Se-Young Choi, Ki‐Up Lee, J. Park, I. Moon, Jong-Gu Park, M. Yoshizumi, Y. Ouchi, I. Lee","doi":"10.1161/01.RES.0000023200.19316.D5","DOIUrl":null,"url":null,"abstract":"Excessive proliferation of vascular smooth muscle cells (VSMCs) and neointimal formation are critical steps in the pathogenesis of atherosclerosis and restenosis after percutaneous transluminal angioplasty. In this study, we investigated the hypothesis that the activator protein-1 (AP-1) plays an important role in neointimal formation after vascular injury. A circular dumbbell AP-1 decoy oligodeoxynucleotide (CDODN) was developed as a novel therapeutic strategy for restenosis after angioplasty. This CDODN was more stable than the conventional phosphorothioate linear decoy ODN (PSODN) and maintained structural integrity on exposure to exonuclease III or serum. Transfection with AP-1 decoy ODNs strongly inhibited VSMC proliferation and migration, as well as glucose- and serum-induced expression of PCNA and cyclin A genes. Administration of AP-1 decoy ODNs in vivo using the hemagglutinating virus of Japan (HVJ)-liposome method virtually abolished neointimal formation after balloon injury to the rat carotid artery. Compared with PSODN, CDODN was more effective in inhibiting the proliferation of VSMCs in vitro and neointimal formation in vivo. Our results collectively indicate that AP-1 activation is crucial for the mediation of VSMC proliferation in response to vascular injury. Moreover, the use of stable CDODN specific for AP-1 activity in combination with the highly effective HVJ-liposome method provides a novel potential therapeutic strategy for the prevention of restenosis after angioplasty in humans.","PeriodicalId":10314,"journal":{"name":"Circulation Research: Journal of the American Heart Association","volume":"84 1","pages":"1325-1332"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Research: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.RES.0000023200.19316.D5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120

Abstract

Excessive proliferation of vascular smooth muscle cells (VSMCs) and neointimal formation are critical steps in the pathogenesis of atherosclerosis and restenosis after percutaneous transluminal angioplasty. In this study, we investigated the hypothesis that the activator protein-1 (AP-1) plays an important role in neointimal formation after vascular injury. A circular dumbbell AP-1 decoy oligodeoxynucleotide (CDODN) was developed as a novel therapeutic strategy for restenosis after angioplasty. This CDODN was more stable than the conventional phosphorothioate linear decoy ODN (PSODN) and maintained structural integrity on exposure to exonuclease III or serum. Transfection with AP-1 decoy ODNs strongly inhibited VSMC proliferation and migration, as well as glucose- and serum-induced expression of PCNA and cyclin A genes. Administration of AP-1 decoy ODNs in vivo using the hemagglutinating virus of Japan (HVJ)-liposome method virtually abolished neointimal formation after balloon injury to the rat carotid artery. Compared with PSODN, CDODN was more effective in inhibiting the proliferation of VSMCs in vitro and neointimal formation in vivo. Our results collectively indicate that AP-1 activation is crucial for the mediation of VSMC proliferation in response to vascular injury. Moreover, the use of stable CDODN specific for AP-1 activity in combination with the highly effective HVJ-liposome method provides a novel potential therapeutic strategy for the prevention of restenosis after angioplasty in humans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型AP-1诱骗物寡脱氧核苷酸对体外血管平滑肌细胞增殖和体内新生内膜形成的抑制作用
血管平滑肌细胞(VSMCs)的过度增殖和新内膜的形成是经皮腔内血管成形术后动脉粥样硬化和再狭窄发病的关键步骤。在本研究中,我们探讨了激活蛋白1 (activator protein-1, AP-1)在血管损伤后新内膜形成中起重要作用的假设。一个圆形哑铃AP-1诱饵寡脱氧核苷酸(CDODN)被开发作为一种新的治疗策略血管成形术后再狭窄。该CDODN比传统的硫代线性诱饵ODN (PSODN)更稳定,并在暴露于核酸外切酶III或血清时保持结构完整性。转染AP-1诱饵ODNs可显著抑制VSMC的增殖和迁移,以及葡萄糖和血清诱导的PCNA和细胞周期蛋白A基因的表达。用日本血凝病毒(HVJ)脂质体法在体内给药AP-1诱捕性ODNs,实际上消除了大鼠颈动脉球囊损伤后新内膜的形成。与PSODN相比,CDODN在体外抑制VSMCs增殖和体内新生内膜形成方面更有效。我们的研究结果共同表明,AP-1的激活对于血管损伤后VSMC增殖的介导至关重要。此外,使用稳定的CDODN特异性AP-1活性与高效的hvj脂质体方法相结合,为预防人类血管成形术后再狭窄提供了一种新的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuron-Derived Orphan Receptor-1 (NOR-1) Modulates Vascular Smooth Muscle Cell Proliferation Functional Compartmentation of Endothelial P2Y Receptor Signaling Cardiac Microstructure: Implications for Electrical Propagation and Defibrillation in the Heart Increased Exchange Current but Normal Ca2+ Transport via Na+-Ca2+ Exchange During Cardiac Hypertrophy After Myocardial Infarction Functionally Novel Tumor Necrosis Factor-&agr;–Modulated CHR-Binding Protein Mediates Cyclin A Transcriptional Repression in Vascular Endothelial Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1