Multiscale Structural Analysis of Ediacaran–Cambrian Rocks on the Northeastern Edge of the Saghro Inlier (Eastern Anti-Atlas): Relevance of Post-Cambrian Deformation
Z. Yajioui, H. Sant’Ovaia, B. Karaoui, C. Cruz, Amar Karaoui, Abdelkader Mahmoudi, Hmidou El Ouardi, L. Badra
{"title":"Multiscale Structural Analysis of Ediacaran–Cambrian Rocks on the Northeastern Edge of the Saghro Inlier (Eastern Anti-Atlas): Relevance of Post-Cambrian Deformation","authors":"Z. Yajioui, H. Sant’Ovaia, B. Karaoui, C. Cruz, Amar Karaoui, Abdelkader Mahmoudi, Hmidou El Ouardi, L. Badra","doi":"10.3390/geosciences13090258","DOIUrl":null,"url":null,"abstract":"The Ediacaran–Cambrian rocks on the northeastern edge of the Saghro inlier experienced polycyclic tectono-thermal events, which are reported here based on a multiscale structural analysis, from field measurements to fluid inclusion planes. Three striking populations were identified, cutting across both the Ediacaran and Cambrian formations. These tectonic structures were generated during four tectonic events. (i) E-W-striking structures that host ore mineralized bodies (sulfide, oxide, quartz, and barite). They display a polyphase tectonic history, caused by a dextral movement in response to a NW–SE-oriented shortening, leading to the formation of quartz gashes and veins. This tectonic event took place during the Neovariscan. These E–W-striking structures were subsequently reactivated during the Mesozoic time under a sinistral strike-slip regime as a result of NE–SW shortening syn-kinematic with barite mineralization. (ii) NE–SW-striking strike-slip structures (dextral or sinistral) crosscut the E–W-striking veins. These faults are related to the NW–SE-oriented shortening that occurred during the Neogene. (iii) The last tectonic episode, related to the N–S shortening, took place during the late Neogene to the Quaternary period. It resulted in NW–SE to N–S-striking structures that were related to dextral and sinistral strike-slip movements, which crosscut the preexisting E–W structures.","PeriodicalId":38189,"journal":{"name":"Geosciences (Switzerland)","volume":"54 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geosciences13090258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Ediacaran–Cambrian rocks on the northeastern edge of the Saghro inlier experienced polycyclic tectono-thermal events, which are reported here based on a multiscale structural analysis, from field measurements to fluid inclusion planes. Three striking populations were identified, cutting across both the Ediacaran and Cambrian formations. These tectonic structures were generated during four tectonic events. (i) E-W-striking structures that host ore mineralized bodies (sulfide, oxide, quartz, and barite). They display a polyphase tectonic history, caused by a dextral movement in response to a NW–SE-oriented shortening, leading to the formation of quartz gashes and veins. This tectonic event took place during the Neovariscan. These E–W-striking structures were subsequently reactivated during the Mesozoic time under a sinistral strike-slip regime as a result of NE–SW shortening syn-kinematic with barite mineralization. (ii) NE–SW-striking strike-slip structures (dextral or sinistral) crosscut the E–W-striking veins. These faults are related to the NW–SE-oriented shortening that occurred during the Neogene. (iii) The last tectonic episode, related to the N–S shortening, took place during the late Neogene to the Quaternary period. It resulted in NW–SE to N–S-striking structures that were related to dextral and sinistral strike-slip movements, which crosscut the preexisting E–W structures.