{"title":"Synthesis, design and use of new BiOBr/Ag@TCPP and BiOBr/Ag@SnTCPP nanocomposites for degradation of dye pollutant","authors":"Marzieh Yaghoubi-berijani, B. Bahramian","doi":"10.22075/CHEM.2020.20112.1819","DOIUrl":null,"url":null,"abstract":"Abstract One important topic to recovery the photocatalytic process is to prevent the recombination of electrons and holes generated by light excitation of the photocatalyst. Different strategies have been used such as a composite of compounds is an appropriative way to reduce the recombination. On the other hand, to optimize the use of visible light , components can composite with visible active components. In this article, to more using solar light and more activation of composite in visible light, sensitization with porphyrin and tin porphyrin complex was carried out. As a result, we reported on the synthesis of BiOBr/Ag@TCPP and BiOBr/Ag@SnTCPP nanocomposites. The nanocomposites were characterized by the XRD, FT-IR, FE-SEM equipped with EDS, Raman, and UV–vis DRS analytical techniques. Furthermore, the photocatalytic activity of nanocomposites sensitized with porphyrin for photodegradation of methyl orange (MO) as model organic pollutant were investigated. The maximum degradation efficiency of 95% is achieved under visible light irradiation in 240 min. The photocatalytic performance of BiOBr/Ag@TCPP and BiOBr/Ag@SnTCPP nanocomposites is much higher than that of BiOBr/Ag.","PeriodicalId":7954,"journal":{"name":"Applied Chemistry","volume":"13 1","pages":"287-306"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/CHEM.2020.20112.1819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract One important topic to recovery the photocatalytic process is to prevent the recombination of electrons and holes generated by light excitation of the photocatalyst. Different strategies have been used such as a composite of compounds is an appropriative way to reduce the recombination. On the other hand, to optimize the use of visible light , components can composite with visible active components. In this article, to more using solar light and more activation of composite in visible light, sensitization with porphyrin and tin porphyrin complex was carried out. As a result, we reported on the synthesis of BiOBr/Ag@TCPP and BiOBr/Ag@SnTCPP nanocomposites. The nanocomposites were characterized by the XRD, FT-IR, FE-SEM equipped with EDS, Raman, and UV–vis DRS analytical techniques. Furthermore, the photocatalytic activity of nanocomposites sensitized with porphyrin for photodegradation of methyl orange (MO) as model organic pollutant were investigated. The maximum degradation efficiency of 95% is achieved under visible light irradiation in 240 min. The photocatalytic performance of BiOBr/Ag@TCPP and BiOBr/Ag@SnTCPP nanocomposites is much higher than that of BiOBr/Ag.