Simple and statistically sound recommendations for analysing physical theories

IF 19 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Reports on Progress in Physics Pub Date : 2020-12-17 DOI:10.1088/1361-6633/ac60ac
Shehu S. Abdussalam, F. Agocs, B. Allanach, P. Athron, Csaba Bal'azs, E. Bagnaschi, P. Bechtle, O. Buchmueller, A. Beniwal, J. Bhom, Sanjay Bloor, T. Bringmann, Andy Buckley, A. Butter, J. E. Camargo-Molina, M. Chrzaszcz, Janice Conrad, Jonathan M. Cornell, M. Danninger, J. Blas, A. Roeck, K. Desch, M. Dolan, H. Dreiner, O. Eberhardt, J. Ellis, Ben Farmer, M. Fedele, H. Flacher, A. Fowlie, T. Gonzalo, Philip Grace, M. Hamer, Will Handley, J. Harz, S. Heinemeyer, S. Hoof, Selim Hotinli, Paul Jackson, F. Kahlhoefer, K. Kowalska, M. Kramer, A. Kvellestad, Miriam Lucio Martínez, F. Mahmoudi, D. M. Santos, G. Martinez, S. Mishima, K. Olive, A. Paul, M. Prim, W. Porod, A. Raklev, Janina J. Renk, C. Rogan, L. Roszkowski, R. R. Austri, Kazuki Sakurai, A. Scaffidi, P. Scott, E. M. Sessolo, T. Stefaniak, Patrick Stöcker, W. Su, S. Trojanowski, R. Trotta, Y. S. Tsai, J. V. D. Abeele, M. Valli, A. Vincent, G. Weiglein, Martin White, P. Wienemann, L. Wu, Yang Zhang
{"title":"Simple and statistically sound recommendations for analysing physical theories","authors":"Shehu S. Abdussalam, F. Agocs, B. Allanach, P. Athron, Csaba Bal'azs, E. Bagnaschi, P. Bechtle, O. Buchmueller, A. Beniwal, J. Bhom, Sanjay Bloor, T. Bringmann, Andy Buckley, A. Butter, J. E. Camargo-Molina, M. Chrzaszcz, Janice Conrad, Jonathan M. Cornell, M. Danninger, J. Blas, A. Roeck, K. Desch, M. Dolan, H. Dreiner, O. Eberhardt, J. Ellis, Ben Farmer, M. Fedele, H. Flacher, A. Fowlie, T. Gonzalo, Philip Grace, M. Hamer, Will Handley, J. Harz, S. Heinemeyer, S. Hoof, Selim Hotinli, Paul Jackson, F. Kahlhoefer, K. Kowalska, M. Kramer, A. Kvellestad, Miriam Lucio Martínez, F. Mahmoudi, D. M. Santos, G. Martinez, S. Mishima, K. Olive, A. Paul, M. Prim, W. Porod, A. Raklev, Janina J. Renk, C. Rogan, L. Roszkowski, R. R. Austri, Kazuki Sakurai, A. Scaffidi, P. Scott, E. M. Sessolo, T. Stefaniak, Patrick Stöcker, W. Su, S. Trojanowski, R. Trotta, Y. S. Tsai, J. V. D. Abeele, M. Valli, A. Vincent, G. Weiglein, Martin White, P. Wienemann, L. Wu, Yang Zhang","doi":"10.1088/1361-6633/ac60ac","DOIUrl":null,"url":null,"abstract":"Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":"55 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/ac60ac","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

Abstract

Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单和统计合理的建议,分析物理理论
物理理论依赖于许多参数或由许多不同实验的数据进行检验,这对统计推断提出了独特的挑战。粒子物理学、天体物理学和宇宙学中的许多模型都属于这些类别中的一个或两个。这些问题经常被统计学上不健全的临时方法所回避,包括由多个实验估计的参数间隔的交集,以及模型参数的随机或网格抽样。虽然这些方法很容易应用,但它们即使在低维参数空间中也表现出病态,并且在高维中使用和解释很快就会出现问题。在本文中,我们为超越这些过程提供了明确的指导,建议在可能的情况下使用简单的方法来执行统计合理的推断,并推荐了可以帮助完成这些工作的现成软件工具和标准。我们的目的是为任何缺乏全面统计训练的物理学家提供得出正确科学结论的建议,而只是适度增加分析负担。我们的示例可以使用Zenodo公开提供的代码进行复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reports on Progress in Physics
Reports on Progress in Physics 物理-物理:综合
CiteScore
31.90
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.
期刊最新文献
Key Issues Review: Useful autonomous quantum machines. Recent developments in tornado theory and observations. A comprehensive review of quantum machine learning: from NISQ to fault tolerance. Physics and technology of Laser Lightning Control. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1