{"title":"Twitter-Based Disaster Response Using Recurrent Nets","authors":"Rabindra Lamsal, T. Kumar","doi":"10.4018/IJSKD.2021070108","DOIUrl":null,"url":null,"abstract":"Twitter has become the major source of data for the research community working on the social computing domain. The microblogging site receives millions of tweets every day on its platform. Earlier studies have shown that during any disaster, the frequency of tweets specific to an event grows exponentially, and these tweets, if monitored, processed, and analyzed, can contain actionable information relating to the event. However, during disasters, the number of tweets can be in the hundreds of thousands thereby necessitating the design of a semi-automated artificial intelligence-based system that can extract actionable information based on which steps can be taken for effective disaster response. This paper proposes a Twitter-based disaster response system that uses recurrent nets for training a classifier on a disaster specific tweets dataset. The proposed system would enable timely dissemination of information to various stakeholders so that timely response and proactive measures can be taken in order to reduce the severe consequences of disasters. Experimental results show that the recurrent nets outperform the traditional machine learning algorithms with regard to accuracy in classifying disaster-specific tweets.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"3 1","pages":"133-150"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSKD.2021070108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Twitter has become the major source of data for the research community working on the social computing domain. The microblogging site receives millions of tweets every day on its platform. Earlier studies have shown that during any disaster, the frequency of tweets specific to an event grows exponentially, and these tweets, if monitored, processed, and analyzed, can contain actionable information relating to the event. However, during disasters, the number of tweets can be in the hundreds of thousands thereby necessitating the design of a semi-automated artificial intelligence-based system that can extract actionable information based on which steps can be taken for effective disaster response. This paper proposes a Twitter-based disaster response system that uses recurrent nets for training a classifier on a disaster specific tweets dataset. The proposed system would enable timely dissemination of information to various stakeholders so that timely response and proactive measures can be taken in order to reduce the severe consequences of disasters. Experimental results show that the recurrent nets outperform the traditional machine learning algorithms with regard to accuracy in classifying disaster-specific tweets.