Vanessa J. Ferreira, Fernanda B. S. Virgens, Laís N. Pires, F. Dias, V. Lemos, L. Teixeira
{"title":"Liquid-phase extraction combined with X-ray fluorescence spectrometry for the elemental determination","authors":"Vanessa J. Ferreira, Fernanda B. S. Virgens, Laís N. Pires, F. Dias, V. Lemos, L. Teixeira","doi":"10.1080/05704928.2022.2113537","DOIUrl":null,"url":null,"abstract":"Abstract X-ray fluorescence spectrometry (XRF) has been widely used for multi-element determination in various samples. However, when trace level determination is required, separation and preconcentration procedures are often used as a step before detection to avoid or reduce interferences and to increase sensitivity. Liquid-phase extraction (LPE) is one of the most well-known and applied pretreatment techniques associated with atomic spectrometry due to its simplicity, speed, and ease of automation. A review of methods involving LPE combined with XRF is presented. Methods described in the literature are discussed, involving conventional LPE and the three main categories of liquid-phase microextraction (LPME): single-drop microextraction (SDME), dispersive liquid–liquid microextraction (DLLME), and hollow fiber liquid-phase microextraction (HF-LPME). Characteristics of the methods are presented, considering experimental aspects, analytical features, advantages, and disadvantages. In addition, trends in the association between LPME techniques and XRF are presented.","PeriodicalId":8100,"journal":{"name":"Applied Spectroscopy Reviews","volume":"102 1","pages":"610 - 628"},"PeriodicalIF":5.4000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/05704928.2022.2113537","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract X-ray fluorescence spectrometry (XRF) has been widely used for multi-element determination in various samples. However, when trace level determination is required, separation and preconcentration procedures are often used as a step before detection to avoid or reduce interferences and to increase sensitivity. Liquid-phase extraction (LPE) is one of the most well-known and applied pretreatment techniques associated with atomic spectrometry due to its simplicity, speed, and ease of automation. A review of methods involving LPE combined with XRF is presented. Methods described in the literature are discussed, involving conventional LPE and the three main categories of liquid-phase microextraction (LPME): single-drop microextraction (SDME), dispersive liquid–liquid microextraction (DLLME), and hollow fiber liquid-phase microextraction (HF-LPME). Characteristics of the methods are presented, considering experimental aspects, analytical features, advantages, and disadvantages. In addition, trends in the association between LPME techniques and XRF are presented.
期刊介绍:
Applied Spectroscopy Reviews provides the latest information on the principles, methods, and applications of all the diverse branches of spectroscopy, from X-ray, infrared, Raman, atomic absorption, and ESR to microwave, mass, NQR, NMR, and ICP. This international, single-source journal presents discussions that relate physical concepts to chemical applications for chemists, physicists, and other scientists using spectroscopic techniques.