V. Santás-Miguel, Avelino Núñez-Delgado, E. Álvarez-Rodríguez, M. Díaz-Raviña, M. Arias-Estévez, D. Fernández-Calviño
{"title":"Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr and Pb pollution","authors":"V. Santás-Miguel, Avelino Núñez-Delgado, E. Álvarez-Rodríguez, M. Díaz-Raviña, M. Arias-Estévez, D. Fernández-Calviño","doi":"10.5194/soil-2021-104","DOIUrl":null,"url":null,"abstract":"Abstract. The widespread use of both heavy metals and antibiotics in livestock farming and their subsequent arrival on agricultural soils through manure/slurry spreading has become a problem of vital importance for human health and the environment. In the current research, a laboratory experiment was carried out for 42 days to study co-selection for tolerance of three tetracycline antibiotics (tetracycline, TC; oxytetracycline, OTC; chlortetracycline, CTC) in soils polluted with heavy metals (As, Cd, Zn, Cu, Ni, Cr and Pb) at high concentration levels (1000 mg kg−1 of each one, separately). Pollution Induced Community Tolerance (PICT) of the bacterial community was estimated using the leucine incorporation technique. The Log IC50 (logarithm of the concentration causing 50 % inhibition in bacterial community growth) values obtained in uncontaminated soil samples for all the heavy metals tested showed the following toxicity sequence: Cu > As > Cr ≥ Pb ≥ Cd > Zn > Ni. However, in polluted soil samples the toxicity sequence was: Cu > Pb ≥ As ≥ Cd ≥ Cr ≥ Ni ≥ Zn. Moreover, at high metal concentrations the bacterial communities show tolerance to the metal itself, this taking place for all the metals tested in the long term. The bacterial communities of the soil polluted with heavy metals showed also long-term co-tolerance to TC, OTC, and CTC. This kind of studies, focusing on the eventual increases of tolerance and co-tolerance of bacterial communities in agricultural soil, favored by the presence of other pollutants, is of crucial importance, mostly bearing in mind that the appearance of antibiotic resistance genes in soil bacteria could be transmitted to human pathogens.\n","PeriodicalId":22015,"journal":{"name":"Soil Science","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/soil-2021-104","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract. The widespread use of both heavy metals and antibiotics in livestock farming and their subsequent arrival on agricultural soils through manure/slurry spreading has become a problem of vital importance for human health and the environment. In the current research, a laboratory experiment was carried out for 42 days to study co-selection for tolerance of three tetracycline antibiotics (tetracycline, TC; oxytetracycline, OTC; chlortetracycline, CTC) in soils polluted with heavy metals (As, Cd, Zn, Cu, Ni, Cr and Pb) at high concentration levels (1000 mg kg−1 of each one, separately). Pollution Induced Community Tolerance (PICT) of the bacterial community was estimated using the leucine incorporation technique. The Log IC50 (logarithm of the concentration causing 50 % inhibition in bacterial community growth) values obtained in uncontaminated soil samples for all the heavy metals tested showed the following toxicity sequence: Cu > As > Cr ≥ Pb ≥ Cd > Zn > Ni. However, in polluted soil samples the toxicity sequence was: Cu > Pb ≥ As ≥ Cd ≥ Cr ≥ Ni ≥ Zn. Moreover, at high metal concentrations the bacterial communities show tolerance to the metal itself, this taking place for all the metals tested in the long term. The bacterial communities of the soil polluted with heavy metals showed also long-term co-tolerance to TC, OTC, and CTC. This kind of studies, focusing on the eventual increases of tolerance and co-tolerance of bacterial communities in agricultural soil, favored by the presence of other pollutants, is of crucial importance, mostly bearing in mind that the appearance of antibiotic resistance genes in soil bacteria could be transmitted to human pathogens.
期刊介绍:
Cessation.Soil Science satisfies the professional needs of all scientists and laboratory personnel involved in soil and plant research by publishing primary research reports and critical reviews of basic and applied soil science, especially as it relates to soil and plant studies and general environmental soil science.
Each month, Soil Science presents authoritative research articles from an impressive array of discipline: soil chemistry and biochemistry, physics, fertility and nutrition, soil genesis and morphology, soil microbiology and mineralogy. Of immediate relevance to soil scientists-both industrial and academic-this unique publication also has long-range value for agronomists and environmental scientists.