Cuckoo Trie: Exploiting Memory-Level Parallelism for Efficient DRAM Indexing

Q3 Computer Science Operating Systems Review (ACM) Pub Date : 2021-10-26 DOI:10.1145/3477132.3483551
Adar Zeitak, Adam Morrison
{"title":"Cuckoo Trie: Exploiting Memory-Level Parallelism for Efficient DRAM Indexing","authors":"Adar Zeitak, Adam Morrison","doi":"10.1145/3477132.3483551","DOIUrl":null,"url":null,"abstract":"We present the Cuckoo Trie, a fast, memory-efficient ordered index structure. The Cuckoo Trie is designed to have memory-level parallelism---which a modern out-of-order processor can exploit to execute DRAM accesses in parallel--- without sacrificing memory efficiency. The Cuckoo Trie thus breaks a fundamental performance barrier faced by current indexes, whose bottleneck is a series of dependent pointer-chasing DRAM accesses---e.g., traversing a search tree path--- which the processor cannot parallelize. Our evaluation shows that the Cuckoo Trie outperforms state-of-the-art-indexes by up to 20%-360% on a variety of datasets and workloads, typically with a smaller or comparable memory footprint.","PeriodicalId":38935,"journal":{"name":"Operating Systems Review (ACM)","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operating Systems Review (ACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477132.3483551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

Abstract

We present the Cuckoo Trie, a fast, memory-efficient ordered index structure. The Cuckoo Trie is designed to have memory-level parallelism---which a modern out-of-order processor can exploit to execute DRAM accesses in parallel--- without sacrificing memory efficiency. The Cuckoo Trie thus breaks a fundamental performance barrier faced by current indexes, whose bottleneck is a series of dependent pointer-chasing DRAM accesses---e.g., traversing a search tree path--- which the processor cannot parallelize. Our evaluation shows that the Cuckoo Trie outperforms state-of-the-art-indexes by up to 20%-360% on a variety of datasets and workloads, typically with a smaller or comparable memory footprint.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
杜鹃树:利用内存级并行性实现高效的DRAM索引
我们提出了Cuckoo tree,一种快速、高效的有序索引结构。杜鹃树被设计成具有内存级并行性——现代乱序处理器可以利用这种并行性来执行DRAM访问——而不会牺牲内存效率。因此,布谷鸟树打破了当前索引面临的一个基本性能障碍,其瓶颈是一系列依赖的指针跟踪DRAM访问。,遍历搜索树路径——处理器无法并行处理。我们的评估表明,在各种数据集和工作负载上,Cuckoo tree的性能比最先进的索引高出20%-360%,通常具有更小或相当的内存占用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Operating Systems Review (ACM)
Operating Systems Review (ACM) Computer Science-Computer Networks and Communications
CiteScore
2.80
自引率
0.00%
发文量
10
期刊介绍: Operating Systems Review (OSR) is a publication of the ACM Special Interest Group on Operating Systems (SIGOPS), whose scope of interest includes: computer operating systems and architecture for multiprogramming, multiprocessing, and time sharing; resource management; evaluation and simulation; reliability, integrity, and security of data; communications among computing processors; and computer system modeling and analysis.
期刊最新文献
Disaggregated GPU Acceleration for Serverless Applications Navigating Performance-Efficiency Tradeoffs in Serverless Computing: Deduplication to the Rescue! Using Local Cache Coherence for Disaggregated Memory Systems Make It Real: An End-to-End Implementation of A Physically Disaggregated Data Center Memory disaggregation: why now and what are the challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1