Solely Calcine Controlled Ferroelectricity and Resistivity of Barium Titanate Thin Films and Their Advanced Memory Applications

T. Schumann, Xiaochen Zhu, J. Neff, A. Hebard, H. Zmuda, Y. Yoon
{"title":"Solely Calcine Controlled Ferroelectricity and Resistivity of Barium Titanate Thin Films and Their Advanced Memory Applications","authors":"T. Schumann, Xiaochen Zhu, J. Neff, A. Hebard, H. Zmuda, Y. Yoon","doi":"10.1109/ECTC.2018.00214","DOIUrl":null,"url":null,"abstract":"Thin films of barium titanate (BTO) are controllably grown to produce two different memory applications: ferroelectric Schottky diodes and resistive switching cells. The entire structure and fabrication of the two cells are identical, except for a slight adjustment to the calcination temperature for the BTO films. Films calcined at 800°C were ferroelectric and were used to create the ferroelectric Schottky diode. Conversely, films calcined at 700°C displayed resistive switching behavior and were used to create memristor cells. The ferroelectric Schottky diodes showed an ON/OFF ratio of over three orders of magnitude and the resistive switching cells showed an ON/OFF ratio of nearly two orders of magnitude, though both can likely be improved through electrode optimization. The identification of the critical process parameter shows that both memory cells can be fabricated on the same die with nearly identical processes, which would reduce process complexity for creating multiple advanced memories on a single die.","PeriodicalId":6555,"journal":{"name":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","volume":"5 1","pages":"1402-1406"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 68th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2018.00214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Thin films of barium titanate (BTO) are controllably grown to produce two different memory applications: ferroelectric Schottky diodes and resistive switching cells. The entire structure and fabrication of the two cells are identical, except for a slight adjustment to the calcination temperature for the BTO films. Films calcined at 800°C were ferroelectric and were used to create the ferroelectric Schottky diode. Conversely, films calcined at 700°C displayed resistive switching behavior and were used to create memristor cells. The ferroelectric Schottky diodes showed an ON/OFF ratio of over three orders of magnitude and the resistive switching cells showed an ON/OFF ratio of nearly two orders of magnitude, though both can likely be improved through electrode optimization. The identification of the critical process parameter shows that both memory cells can be fabricated on the same die with nearly identical processes, which would reduce process complexity for creating multiple advanced memories on a single die.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钛酸钡薄膜的完全煅烧控制铁电性和电阻率及其在高级存储器中的应用
钛酸钡(BTO)薄膜可被控制地生长,以产生两种不同的存储应用:铁电肖特基二极管和电阻开关电池。除了BTO薄膜的煅烧温度略有调整外,两个电池的整个结构和制造都是相同的。在800°C下煅烧的薄膜具有铁电性,可用于制造铁电肖特基二极管。相反,在700°C下煅烧的薄膜显示出电阻开关行为,并用于制造忆阻器电池。铁电肖特基二极管显示出超过三个数量级的开/关比,电阻开关电池显示出接近两个数量级的开/关比,尽管两者都有可能通过电极优化来提高。关键工艺参数的确定表明,两个存储单元可以用几乎相同的工艺在同一模具上制造,这将降低在单个模具上制造多个高级存储单元的工艺复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Novel Fine Line 2.1 D Package with Organic Interposer Using Advanced Substrate-Based Process A Novel Finite Element Technique for Moisture Diffusion Modeling Using ANSYS Mechanical Modelling of High Power Lateral IGBT for LED Driver Applications Physical Aging of Epoxy Molding Compound and Its Influences on the Warpage of Reconstituted Wafer Controlling Die Warpage by Applying Under Bump Metallurgy for Fan-Out Package Process Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1