Integrated Simultaneous Joint and Full-Waveform Inversion Workflow for Multiphysics Near-Surface Modeling

A. Sirtori, M. Mantovani, A. Epifani, F. Miotti
{"title":"Integrated Simultaneous Joint and Full-Waveform Inversion Workflow for Multiphysics Near-Surface Modeling","authors":"A. Sirtori, M. Mantovani, A. Epifani, F. Miotti","doi":"10.3997/2214-4609.201900969","DOIUrl":null,"url":null,"abstract":"Summary Building a solid starting model remains one of the most challenging tasks for a robust application of full-waveform inversion (FWI). Several aspects can drive the FWI data optimization towards a local minimum of the cost function, such as the lack of low frequency, the offset limitation, and the presence of alternating high-low velocity layering in the stratigraphic sequence. This risk can be mitigated by geophysically preconditioning the FWI starting model, leveraging multiphysics independent measurement through simultaneous joint inversion. In this multiphysics multiscale approach, the seismic information is valuably coupled with non-seismic observations, with the potential benefit of reducing the non-uniqueness of surface geophysics inversions and increasing the robustness and fitness of the input model for FWI.","PeriodicalId":6840,"journal":{"name":"81st EAGE Conference and Exhibition 2019","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"81st EAGE Conference and Exhibition 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Summary Building a solid starting model remains one of the most challenging tasks for a robust application of full-waveform inversion (FWI). Several aspects can drive the FWI data optimization towards a local minimum of the cost function, such as the lack of low frequency, the offset limitation, and the presence of alternating high-low velocity layering in the stratigraphic sequence. This risk can be mitigated by geophysically preconditioning the FWI starting model, leveraging multiphysics independent measurement through simultaneous joint inversion. In this multiphysics multiscale approach, the seismic information is valuably coupled with non-seismic observations, with the potential benefit of reducing the non-uniqueness of surface geophysics inversions and increasing the robustness and fitness of the input model for FWI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多物理场近地表建模集成同步联合全波形反演工作流程
对于全波形反演(FWI)的稳健应用来说,建立一个可靠的起始模型仍然是最具挑战性的任务之一。有几个方面可以推动FWI数据优化,使成本函数达到局部最小,例如缺乏低频、偏移限制以及地层层序中存在高低速交替分层。通过对FWI启动模型进行物理预处理,通过同时联合反演利用多物理场独立测量,可以降低这种风险。在这种多物理场多尺度方法中,地震信息有效地与非地震观测相结合,减少了地表地球物理反演的非唯一性,提高了FWI输入模型的鲁棒性和适应度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Recurrent Architectures for Seismic Tomography UK Geoenergy Observatories: New Facilities to Understand the Future Energy Challenges A New Approach for Determining Optimum Location of Injection Wells Using an Efficient Dynamic Based Method Microseismic Magnitudes: Challenges in Determining the Correct Moment and Operating Regulatory Frameworks Machine-Learning in Oil and Gas Exploration: A New Approach to Geological Risk Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1