{"title":"Transfer Case Clutch Torque Modeling and Validation Under Slip and Overtaken Conditions","authors":"Wenpeng Wei, Hussein Dourra, G. Zhu","doi":"10.1115/1.4049543","DOIUrl":null,"url":null,"abstract":"The vehicle transfer case clutch plays an important role for four-wheel drive (4WD) vehicles since the torque transmitted through the clutch determines the amount of traction torque on tires, which is important for vehicle performance. However, the clutch torque measurement is usually unavailable on production vehicles and needs to be estimated accurately to improve vehicle performance. This paper proposes a unified scheme to model clutch output torque under all three conditions: open (no torque output), slipping, and overtaken. Specifically, the clutch torque model under clutch overtaken condition is first investigated using the vehicle longitudinal and tire dynamics. It was found that effective radius of front tires, powered by the transfer case clutch torque, cannot be assumed as constant and should be compensated by vehicle acceleration, while the effective radius of rear tires connected directly to the propulsion system does not need to be compensated. In addition, it was found that torque model under clutch overtaken condition cannot be used under slip condition. As a result, a general clutch torque model is developed for both slip and overtaken conditions with a clutch slip speed compensation, resulting a root-mean-square error percentage (RMSE%) of 6.8% comparing with the experimental measurement data. Note that overtaken torque model is a special case of the general torque model by setting slip speed equal to zero. The general clutch torque model is able to calculate clutch output torque accurately under both slip and overtaken conditions.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"59 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4049543","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
The vehicle transfer case clutch plays an important role for four-wheel drive (4WD) vehicles since the torque transmitted through the clutch determines the amount of traction torque on tires, which is important for vehicle performance. However, the clutch torque measurement is usually unavailable on production vehicles and needs to be estimated accurately to improve vehicle performance. This paper proposes a unified scheme to model clutch output torque under all three conditions: open (no torque output), slipping, and overtaken. Specifically, the clutch torque model under clutch overtaken condition is first investigated using the vehicle longitudinal and tire dynamics. It was found that effective radius of front tires, powered by the transfer case clutch torque, cannot be assumed as constant and should be compensated by vehicle acceleration, while the effective radius of rear tires connected directly to the propulsion system does not need to be compensated. In addition, it was found that torque model under clutch overtaken condition cannot be used under slip condition. As a result, a general clutch torque model is developed for both slip and overtaken conditions with a clutch slip speed compensation, resulting a root-mean-square error percentage (RMSE%) of 6.8% comparing with the experimental measurement data. Note that overtaken torque model is a special case of the general torque model by setting slip speed equal to zero. The general clutch torque model is able to calculate clutch output torque accurately under both slip and overtaken conditions.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.