Human impact on symbioses between aquatic organisms and microbes

IF 1.6 4区 环境科学与生态学 Q3 ECOLOGY Aquatic Microbial Ecology Pub Date : 2021-01-01 DOI:10.3354/AME01973
W. Stock, M. Callens, S. Houwenhuyse, R. Schols, N. Goel, M. Coone, C. Theys, V. Delnat, A. Boudry, EM Eckert, C. Laspoumaderes, H. Grossart, L. Meester, R. Stoks, K. Sabbe, E. Decaestecker
{"title":"Human impact on symbioses between aquatic organisms and microbes","authors":"W. Stock, M. Callens, S. Houwenhuyse, R. Schols, N. Goel, M. Coone, C. Theys, V. Delnat, A. Boudry, EM Eckert, C. Laspoumaderes, H. Grossart, L. Meester, R. Stoks, K. Sabbe, E. Decaestecker","doi":"10.3354/AME01973","DOIUrl":null,"url":null,"abstract":"Aquatic organisms rely on microbial symbionts for coping with various challenges they encounter during stress and for defending themselves against predators, pathogens and parasites. Microbial symbionts are also often indispensable for the host’s development or life cycle completion. Many aquatic ecosystems are currently under pressure due to diverse human activities that have a profound impact on ecosystem functioning. These human activities are also ex pected to alter interactions between aquatic hosts and their associated microbes. This can directly impact the host’s health and — given the importance and widespread occurrence of microbial symbiosis in aquatic systems — the ecosystem at large. In this review, we provide an overview of the importance of microbial symbionts for aquatic organisms, and we consider how the beneficial services provided by microbial symbionts can be affected by human activities. The scarcity of available studies that assess the functional consequences of human impacts on aquatic microbial symbioses shows that our knowledge on this topic is currently limited, making it difficult to draw general conclusions and predict future changes in microbial symbiont−host relationships in a changing world. To address this important knowledge gap, we provide an overview of ap proaches that can be used to assess the impact of human disturbances on the functioning of aquatic microbial symbioses.","PeriodicalId":8112,"journal":{"name":"Aquatic Microbial Ecology","volume":"4 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Microbial Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3354/AME01973","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

Aquatic organisms rely on microbial symbionts for coping with various challenges they encounter during stress and for defending themselves against predators, pathogens and parasites. Microbial symbionts are also often indispensable for the host’s development or life cycle completion. Many aquatic ecosystems are currently under pressure due to diverse human activities that have a profound impact on ecosystem functioning. These human activities are also ex pected to alter interactions between aquatic hosts and their associated microbes. This can directly impact the host’s health and — given the importance and widespread occurrence of microbial symbiosis in aquatic systems — the ecosystem at large. In this review, we provide an overview of the importance of microbial symbionts for aquatic organisms, and we consider how the beneficial services provided by microbial symbionts can be affected by human activities. The scarcity of available studies that assess the functional consequences of human impacts on aquatic microbial symbioses shows that our knowledge on this topic is currently limited, making it difficult to draw general conclusions and predict future changes in microbial symbiont−host relationships in a changing world. To address this important knowledge gap, we provide an overview of ap proaches that can be used to assess the impact of human disturbances on the functioning of aquatic microbial symbioses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类对水生生物和微生物共生的影响
水生生物依靠微生物共生体来应对它们在压力下遇到的各种挑战,并保护自己免受捕食者、病原体和寄生虫的侵害。微生物共生体对于宿主的发育或生命周期的完成也是不可或缺的。由于各种各样的人类活动对生态系统的功能产生了深远的影响,许多水生生态系统目前正面临压力。预计这些人类活动也会改变水生宿主及其相关微生物之间的相互作用。这可以直接影响宿主的健康,并且-鉴于水生系统中微生物共生的重要性和广泛存在-整个生态系统。在本文中,我们概述了微生物共生体对水生生物的重要性,并考虑了微生物共生体提供的有益服务如何受到人类活动的影响。评估人类对水生微生物共生的影响的功能后果的现有研究的缺乏表明,我们对这一主题的了解目前是有限的,这使得在不断变化的世界中很难得出一般性结论并预测微生物共生-宿主关系的未来变化。为了解决这一重要的知识差距,我们概述了可用于评估人类干扰对水生微生物共生功能影响的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Microbial Ecology
Aquatic Microbial Ecology 环境科学-海洋与淡水生物学
CiteScore
3.30
自引率
0.00%
发文量
8
审稿时长
3.0 months
期刊介绍: AME is international and interdisciplinary. It presents rigorously refereed and carefully selected Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see AME 27:209), Opinion Pieces (previously called ''As I See It'') and AME Specials. For details consult the Guidelines for Authors. Papers may be concerned with: Tolerances and responses of microorganisms to variations in abiotic and biotic components of their environment; microbial life under extreme environmental conditions (climate, temperature, pressure, osmolarity, redox, etc.). Role of aquatic microorganisms in the production, transformation and decomposition of organic matter; flow patterns of energy and matter as these pass through microorganisms; population dynamics; trophic interrelationships; modelling, both theoretical and via computer simulation, of individual microorganisms and microbial populations; biodiversity. Absorption and transformation of inorganic material; synthesis and transformation of organic material (autotrophic and heterotrophic); non-genetic and genetic adaptation; behaviour; molecular microbial ecology; symbioses.
期刊最新文献
Shore and mid-channel surveys reveal distinct phytoplankton-bacterial population associations along an urban estuary Complementary chromatic acclimation by shifts in phycobiliprotein spectral absorption in the cryptophyte Hemiselmis pacifica Near-benthic coral reef picoplankton vary at fine scales decoupled from benthic cover Salinity gradient differentiates potential novel ecotypes and diversity of Labyrinthulomycetes protists along the Haihe River, northern China Species sorting as the major driver of turnover for both planktonic and periphytic bacteria and the subgroup cyanobacteria in a subtropical lake system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1