{"title":"EXERCISE AND BRAIN FUNCTION: IS IT REDOX REGULATED?","authors":"Z. Radák","doi":"10.18143/JISANH_V3I2_1441","DOIUrl":null,"url":null,"abstract":"Regular exercise has systemic beneficial effects including the promotion of brain function. The adaptive response to regular exercise includes the up-regulation of the enzymatic antioxidant system, and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling and exercise through activity dependent modulation of metabolism and/or direct activation of ROS generating enzymes, thus, modulating the cellular redox state in the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and, as a result, exercise-mediated neurogenesis could be associated with ROS production. Exercise has a powerful effect on the immune system, and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-a, IL-18 and interferon gamma are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS- mediated alteration of lipids, protein and DNA could directly affect brain function while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules, to a moderate degree, can activate signaling processes. Hence, it could be part of the adaptive response to exercise training.","PeriodicalId":17323,"journal":{"name":"Journal of the International Society of Antioxidants in Nutrition & Health","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Society of Antioxidants in Nutrition & Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18143/JISANH_V3I2_1441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Regular exercise has systemic beneficial effects including the promotion of brain function. The adaptive response to regular exercise includes the up-regulation of the enzymatic antioxidant system, and modulation of oxidative damage. Reactive oxygen species (ROS) are important regulators of cell signaling and exercise through activity dependent modulation of metabolism and/or direct activation of ROS generating enzymes, thus, modulating the cellular redox state in the brain. ROS are also involved in the self-renewal and differentiation of neuronal stem cells and, as a result, exercise-mediated neurogenesis could be associated with ROS production. Exercise has a powerful effect on the immune system, and readily alters the production of cytokines. Certain cytokines, especially IL-6, IL-1, TNF-a, IL-18 and interferon gamma are actively involved in the modulation of synaptic plasticity and neurogenesis. Cytokines can also contribute to ROS production. ROS- mediated alteration of lipids, protein and DNA could directly affect brain function while exercise modulates the accumulation of oxidative damage. Oxidative alteration of macromolecules, to a moderate degree, can activate signaling processes. Hence, it could be part of the adaptive response to exercise training.