Yuxuan Xia, P. Wang, K. Berntorp, H. Mansour, P. Boufounos, P. Orlik
{"title":"Extended Object Tracking Using Hierarchical Truncation Model with Partial-View Measurements","authors":"Yuxuan Xia, P. Wang, K. Berntorp, H. Mansour, P. Boufounos, P. Orlik","doi":"10.1109/SAM48682.2020.9104388","DOIUrl":null,"url":null,"abstract":"This paper introduces the hierarchical truncated Gaussian model in representing automotive radar measurements for extended object tracking. The model aims at a flexible spatial distribution with adaptive truncation bounds to account for partial-view measurements caused by self-occlusion. Built on a random matrix approach, we propose a new state update step together with an adaptively update of the truncation bounds. This is achieved by introducing spatial-domain pseudo measurements and by aggregating partial-view measurements over consecutive time-domain scans. The effectiveness of the proposed algorithm is verified on a synthetic dataset and an independent dataset generated using the MathWorks Automated Driving toolbox.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper introduces the hierarchical truncated Gaussian model in representing automotive radar measurements for extended object tracking. The model aims at a flexible spatial distribution with adaptive truncation bounds to account for partial-view measurements caused by self-occlusion. Built on a random matrix approach, we propose a new state update step together with an adaptively update of the truncation bounds. This is achieved by introducing spatial-domain pseudo measurements and by aggregating partial-view measurements over consecutive time-domain scans. The effectiveness of the proposed algorithm is verified on a synthetic dataset and an independent dataset generated using the MathWorks Automated Driving toolbox.