{"title":"Current-voltage and Optoelectronic Properties of Semiconducting ZnO Nanobelts","authors":"Dingqu Wang, R. Zhu, Zhaoying Zhou, X. Ye","doi":"10.1109/NEMS.2006.334903","DOIUrl":null,"url":null,"abstract":"We report on electrophoretic alignment of ZnO nanobelt bunches and their electrical and optical properties. The nanobelts were trapped onto a pair of electrodes by using alternating electrical current at frequency between 5 ~ 50 MHz and peak-to-peak amplitude from 2 to 20 V. Their electrical transport properties associated with the photoelectricity were studied at room temperature in the air ambient by using a xenon arc lamp source. Three typical IV characteristics were observed: asymmetry, symmetry and infinite impedance. The photoconductivity measurements show that the photocurrent through ZnO nanobelts increases as about 1.6 power of light intensity. The electron concentration Delta n is estimated to be 3.3times107 cm-1 at a bias voltage of -3V. Photocurrent decay was also studied through the experiment of photoresponse to illumination, and the decay time was estimated to be about 3 s. Collectively, ZnO nanobelts are demonstrated to be a remarkable optoelectronic material that holds wide applications for nanoscale photonic devices.","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"1 1","pages":"817-820"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We report on electrophoretic alignment of ZnO nanobelt bunches and their electrical and optical properties. The nanobelts were trapped onto a pair of electrodes by using alternating electrical current at frequency between 5 ~ 50 MHz and peak-to-peak amplitude from 2 to 20 V. Their electrical transport properties associated with the photoelectricity were studied at room temperature in the air ambient by using a xenon arc lamp source. Three typical IV characteristics were observed: asymmetry, symmetry and infinite impedance. The photoconductivity measurements show that the photocurrent through ZnO nanobelts increases as about 1.6 power of light intensity. The electron concentration Delta n is estimated to be 3.3times107 cm-1 at a bias voltage of -3V. Photocurrent decay was also studied through the experiment of photoresponse to illumination, and the decay time was estimated to be about 3 s. Collectively, ZnO nanobelts are demonstrated to be a remarkable optoelectronic material that holds wide applications for nanoscale photonic devices.