{"title":"On LQ optimization problem subject to fractional order irregular singular systems","authors":"","doi":"10.24425/acs.2020.135850","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the linear quadratic (LQ) optimization problem subject to fractional order irregular singular systems. The aim of this paper is to find the control-state pairs satisfying the dynamic constraint of the form a fractional order irregular singular systems such that the LQ objective functional is minimized. The method of solving is to convert such LQ optimization into the standard fractional LQ optimization problem. Under some particularly conditions we find the solution of the problem under consideration.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"4 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/acs.2020.135850","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper we discuss the linear quadratic (LQ) optimization problem subject to fractional order irregular singular systems. The aim of this paper is to find the control-state pairs satisfying the dynamic constraint of the form a fractional order irregular singular systems such that the LQ objective functional is minimized. The method of solving is to convert such LQ optimization into the standard fractional LQ optimization problem. Under some particularly conditions we find the solution of the problem under consideration.
期刊介绍:
Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.