Study of the adhesion between TPU and PLA in multi-material 3D printing

E. Brancewicz-Steinmetz, R.D.V. Vergara, V. Buzalski, J. Sawicki
{"title":"Study of the adhesion between TPU and PLA in multi-material 3D printing","authors":"E. Brancewicz-Steinmetz, R.D.V. Vergara, V. Buzalski, J. Sawicki","doi":"10.5604/01.3001.0016.2672","DOIUrl":null,"url":null,"abstract":"In the Fused Filament Fabrication (FFF/FDM) technology, the multi-material manufacturing additive method is achieved by a single nozzle or multiple nozzles working simultaneously with different materials. However, the adhesion between different materials at the boundary interface in FDM multi-material printing is a limiting factor. These studies are concerned with improving and study the adhesion between two polymers.Due to the numerous applications and possibilities of 3D printed objects, combining different materials has become a subject of interest. PLA is an alternative to the use of petrochemical-based polymers. Thermoplastic Polyurethane is a flexible material that can achieve different characteristics when combined with a rigid filament, such as PLA. To improve the adhesion between PLA and TPU in multi-material FFF/FDM, we propose the comparison of different processes: post-processing with acetone immersion, surface activation during printing with Acetone, surface activation during printing with tetrahydrofuran, post-processing annealing, and connection of printed parts with tetrahydrofuran.Modifying the 3D printing process improved the quality of the adhesive bond between the two different polymers. Activation of the surface with THF is the treatment method recommended by the authors due to the low impact on the deformation/degradation of the object.In the study, adhesion was considered in relation to the circular pattern of surface development. Further analysis should include other surface development patterns and changes in printing parameters, e.g. process temperatures and layer application speed.3D printing with multi-materials, such as PLA biopolymer and thermoplastic polyurethane, allows for the creation of flexible connections. The strengthening of the biopolymer broadens the possibilities of using polylactide. Examples of applications include: automotive (elements, where flexible TPU absorbs vibrations and protects PLA from cracking), medicine (prostheses with flexible elements ensuring mobility in the joints).Multi-material printing is a new trend in 3D printing research, and this research is aimed at promoting the use and expanding the possibilities of using PLA biopolymer.","PeriodicalId":14825,"journal":{"name":"Journal of Achievements in Materials and Manufacturing Engineering","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Achievements in Materials and Manufacturing Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0016.2672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In the Fused Filament Fabrication (FFF/FDM) technology, the multi-material manufacturing additive method is achieved by a single nozzle or multiple nozzles working simultaneously with different materials. However, the adhesion between different materials at the boundary interface in FDM multi-material printing is a limiting factor. These studies are concerned with improving and study the adhesion between two polymers.Due to the numerous applications and possibilities of 3D printed objects, combining different materials has become a subject of interest. PLA is an alternative to the use of petrochemical-based polymers. Thermoplastic Polyurethane is a flexible material that can achieve different characteristics when combined with a rigid filament, such as PLA. To improve the adhesion between PLA and TPU in multi-material FFF/FDM, we propose the comparison of different processes: post-processing with acetone immersion, surface activation during printing with Acetone, surface activation during printing with tetrahydrofuran, post-processing annealing, and connection of printed parts with tetrahydrofuran.Modifying the 3D printing process improved the quality of the adhesive bond between the two different polymers. Activation of the surface with THF is the treatment method recommended by the authors due to the low impact on the deformation/degradation of the object.In the study, adhesion was considered in relation to the circular pattern of surface development. Further analysis should include other surface development patterns and changes in printing parameters, e.g. process temperatures and layer application speed.3D printing with multi-materials, such as PLA biopolymer and thermoplastic polyurethane, allows for the creation of flexible connections. The strengthening of the biopolymer broadens the possibilities of using polylactide. Examples of applications include: automotive (elements, where flexible TPU absorbs vibrations and protects PLA from cracking), medicine (prostheses with flexible elements ensuring mobility in the joints).Multi-material printing is a new trend in 3D printing research, and this research is aimed at promoting the use and expanding the possibilities of using PLA biopolymer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多材料3D打印中TPU与PLA的粘合研究
在熔融长丝制造(FFF/FDM)技术中,多材料制造增材方法是通过单个喷嘴或多个喷嘴同时对不同材料进行加工来实现的。然而,在FDM多材料打印中,不同材料之间在边界界面处的粘附是一个限制因素。这些研究是关于改善和研究两种聚合物之间的附着力。由于3D打印对象的众多应用和可能性,结合不同的材料已经成为一个感兴趣的主题。聚乳酸是石化基聚合物的替代品。热塑性聚氨酯是一种柔性材料,当与PLA等刚性长丝结合时,可以实现不同的特性。为了提高PLA和TPU在多材料FFF/FDM中的粘附性,我们提出了不同工艺的比较:丙酮浸泡后处理、丙酮打印时表面活化、四氢呋喃打印时表面活化、后处理退火和四氢呋喃连接打印部件。修改3D打印工艺提高了两种不同聚合物之间的粘合质量。由于对物体变形/降解的影响较小,因此用THF活化表面是作者推荐的处理方法。在研究中,附着力被认为与表面发展的圆形模式有关。进一步的分析应包括其他表面显影模式和印刷参数的变化,例如工艺温度和层应用速度。3D打印使用多种材料,如PLA生物聚合物和热塑性聚氨酯,允许创建灵活的连接。生物聚合物的强化拓宽了使用聚乳酸的可能性。应用示例包括:汽车(元件,其中柔性TPU吸收振动并保护PLA免于开裂),医学(具有柔性元件的假体,确保关节的机动性)。多材料打印是3D打印研究的一个新趋势,本研究旨在促进PLA生物聚合物的使用和扩大其使用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Achievements in Materials and Manufacturing Engineering
Journal of Achievements in Materials and Manufacturing Engineering Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
15
期刊介绍: The Journal of Achievements in Materials and Manufacturing Engineering has been published by the Association for Computational Materials Science and Surface Engineering in collaboration with the World Academy of Materials and Manufacturing Engineering WAMME and the Section Metallic Materials of the Committee of Materials Science of the Polish Academy of Sciences as a monthly. It has 12 points which was received during the evaluation by the Ministry of Science and Higher Education journals and ICV 2017:100 on the ICI Journals Master list announced by the Index Copernicus. It is a continuation of "Proceedings on Achievements in Mechanical and Materials Engineering" published in 1992-2005. Scope: Materials[...] Properties[...] Methodology of Research[...] Analysis and Modelling[...] Manufacturing and Processingv Biomedical and Dental Engineering and Materials[...] Cleaner Production[...] Industrial Mangement and Organisation [...] Education and Research Trends[...]
期刊最新文献
Characteristics and electrochemical properties of Al2O3 thin films on surgical scalpel blades TiO2 coatings on titanium obtained by anodising in a 2% Na2SiO3 solution at various voltages Improving activities in the processes of ensuring the quality of education in higher education schools and scientific institutes Determination of the strength characteristics of a flanged joint with a flat gasket and loose retaining rings using a 3-point bending test An investigation of mandibular asymmetries in patients with TMD as an element of the design of dental polymeric devices for early rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1