Kinde Lamessa Tesgera, B. Nandeshwar, Z. Jalata, Teferi Chala Chala
{"title":"Physical quality of coffee bean (Coffea arabica L.) as affected by harvesting and drying methods","authors":"Kinde Lamessa Tesgera, B. Nandeshwar, Z. Jalata, Teferi Chala Chala","doi":"10.24154/jhs.v16i2.1182","DOIUrl":null,"url":null,"abstract":"Coffee is a stimulant crop with high socio-economic cultural value including economical significance in Ethiopia. This study was conducted in 2019-2020 to investigate the effect of harvesting methods and drying surfaces on the physical quality of the coffee beans. The experiment was carried out with two factors, harvesting methods and drying surfaces laid out in a two factorial completely randomized block design with three replications using a landrace coffee variety. The result showed that the interaction of harvesting methods and drying surfaces was highly significant (P<0.01) for coffee bean size and dried coffee berry weight. The highest beans retained above screen were recorded from the interaction of mesh wire (90%) and cemented drying (89%) surfaces with selective harvesting methods. The highest dried coffee berry weight (69.33 gm) were attained from the interaction of selective harvesting with mesh wire drying surfaces. The lowest dried coffee berry weight (63.79 gm) were attained from the interaction of strip harvesting with tin drying surfaces. Significant (P<0.05) variation for primary defects, length of drying period were recorded. Higher length of drying periods (41.67 days) was recorded from the interaction of mesh wire drying surfaces with selective harvesting method and the lowest (20.33 days) was recorded from the interaction of tin drying surfaces with strip harvesting method. The highest percentage of primary defected beans were recorded from the interaction of selective harvesting methods with mesh wire drying surfaces (15%) and the lowest number were recorded from strip harvesting method with drying on plastic (5%). Therefore, it can be concluded that using the interaction of selective harvesting and drying on mesh wire is better for optimum physical quality of coffee in the studied area","PeriodicalId":36766,"journal":{"name":"Journal of Horticultural Sciences","volume":"35 6 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Horticultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24154/jhs.v16i2.1182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Coffee is a stimulant crop with high socio-economic cultural value including economical significance in Ethiopia. This study was conducted in 2019-2020 to investigate the effect of harvesting methods and drying surfaces on the physical quality of the coffee beans. The experiment was carried out with two factors, harvesting methods and drying surfaces laid out in a two factorial completely randomized block design with three replications using a landrace coffee variety. The result showed that the interaction of harvesting methods and drying surfaces was highly significant (P<0.01) for coffee bean size and dried coffee berry weight. The highest beans retained above screen were recorded from the interaction of mesh wire (90%) and cemented drying (89%) surfaces with selective harvesting methods. The highest dried coffee berry weight (69.33 gm) were attained from the interaction of selective harvesting with mesh wire drying surfaces. The lowest dried coffee berry weight (63.79 gm) were attained from the interaction of strip harvesting with tin drying surfaces. Significant (P<0.05) variation for primary defects, length of drying period were recorded. Higher length of drying periods (41.67 days) was recorded from the interaction of mesh wire drying surfaces with selective harvesting method and the lowest (20.33 days) was recorded from the interaction of tin drying surfaces with strip harvesting method. The highest percentage of primary defected beans were recorded from the interaction of selective harvesting methods with mesh wire drying surfaces (15%) and the lowest number were recorded from strip harvesting method with drying on plastic (5%). Therefore, it can be concluded that using the interaction of selective harvesting and drying on mesh wire is better for optimum physical quality of coffee in the studied area