{"title":"Image clustering fusion technique based on BFS","authors":"Luca Costantini, Raffaele Nicolussi","doi":"10.1145/2063576.2063898","DOIUrl":null,"url":null,"abstract":"With the increasing in number and size of databases dedicated to the storage of visual content, the need for effective retrieval systems has become crucial. The proposed method makes a significant contribution to meet this need through a technique in which sets of clusters are fused together to create an unique and more significant set of clusters. The images are represented by some features and then are grouped by these features, that are considered one by one. A probability matrix is then built and explored by the breadth first search algorithm with the aim of select an unique set of clusters. Experimental results, obtained using two different datasets, show the effectiveness of the proposed technique. Furthermore, the proposed approach overcomes the drawback of tuning a set of parameters that fuse the similarity measurement obtained by each feature to get an overall similarity between two images.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"9 1","pages":"2093-2096"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the increasing in number and size of databases dedicated to the storage of visual content, the need for effective retrieval systems has become crucial. The proposed method makes a significant contribution to meet this need through a technique in which sets of clusters are fused together to create an unique and more significant set of clusters. The images are represented by some features and then are grouped by these features, that are considered one by one. A probability matrix is then built and explored by the breadth first search algorithm with the aim of select an unique set of clusters. Experimental results, obtained using two different datasets, show the effectiveness of the proposed technique. Furthermore, the proposed approach overcomes the drawback of tuning a set of parameters that fuse the similarity measurement obtained by each feature to get an overall similarity between two images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BFS的图像聚类融合技术
随着专门用于存储视觉内容的数据库数量和规模的增加,对有效检索系统的需求变得至关重要。本文提出的方法为满足这一需求做出了重大贡献,该方法通过一种技术将集群集融合在一起,以创建一个独特且更重要的集群集。图像由一些特征表示,然后按这些特征分组,逐个考虑。然后通过广度优先搜索算法建立概率矩阵,以选择一组唯一的聚类。使用两个不同的数据集获得的实验结果表明了该技术的有效性。此外,该方法克服了调整一组参数的缺点,这些参数融合了每个特征获得的相似性度量,以获得两幅图像之间的总体相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data. iMIRACLE: an Iterative Multi-View Graph Neural Network to Model Intercellular Gene Regulation from Spatial Transcriptomic Data. Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing. Enabling Health Data Sharing with Fine-Grained Privacy. MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1