{"title":"A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation","authors":"T. Bui, Josiah Yan, Richard E. Turner","doi":"10.17863/CAM.20846","DOIUrl":null,"url":null,"abstract":"Gaussian processes (GPs) are flexible distributions over functions that enable high-level assumptions about unknown functions to be encoded in a parsimonious, flexible and general way. Although elegant, the application of GPs is limited by computational and analytical intractabilities that arise when data are sufficiently numerous or when employing non-Gaussian models. Consequently, a wealth of GP approximation schemes have been developed over the last 15 years to address these key limitations. Many of these schemes employ a small set of pseudo data points to summarise the actual data. In this paper, we develop a new pseudo-point approximation framework using Power Expectation Propagation (Power EP) that unifies a large number of these pseudo-point approximations. Unlike much of the previous venerable work in this area, the new framework is built on standard methods for approximate inference (variational free-energy, EP and Power EP methods) rather than employing approximations to the probabilistic generative model itself. In this way, all of approximation is performed at `inference time' rather than at `modelling time' resolving awkward philosophical and empirical questions that trouble previous approaches. Crucially, we demonstrate that the new framework includes new pseudo-point approximation methods that outperform current approaches on regression and classification tasks.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"12 1","pages":"104:1-104:72"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17863/CAM.20846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123
Abstract
Gaussian processes (GPs) are flexible distributions over functions that enable high-level assumptions about unknown functions to be encoded in a parsimonious, flexible and general way. Although elegant, the application of GPs is limited by computational and analytical intractabilities that arise when data are sufficiently numerous or when employing non-Gaussian models. Consequently, a wealth of GP approximation schemes have been developed over the last 15 years to address these key limitations. Many of these schemes employ a small set of pseudo data points to summarise the actual data. In this paper, we develop a new pseudo-point approximation framework using Power Expectation Propagation (Power EP) that unifies a large number of these pseudo-point approximations. Unlike much of the previous venerable work in this area, the new framework is built on standard methods for approximate inference (variational free-energy, EP and Power EP methods) rather than employing approximations to the probabilistic generative model itself. In this way, all of approximation is performed at `inference time' rather than at `modelling time' resolving awkward philosophical and empirical questions that trouble previous approaches. Crucially, we demonstrate that the new framework includes new pseudo-point approximation methods that outperform current approaches on regression and classification tasks.