A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation

T. Bui, Josiah Yan, Richard E. Turner
{"title":"A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation","authors":"T. Bui, Josiah Yan, Richard E. Turner","doi":"10.17863/CAM.20846","DOIUrl":null,"url":null,"abstract":"Gaussian processes (GPs) are flexible distributions over functions that enable high-level assumptions about unknown functions to be encoded in a parsimonious, flexible and general way. Although elegant, the application of GPs is limited by computational and analytical intractabilities that arise when data are sufficiently numerous or when employing non-Gaussian models. Consequently, a wealth of GP approximation schemes have been developed over the last 15 years to address these key limitations. Many of these schemes employ a small set of pseudo data points to summarise the actual data. In this paper, we develop a new pseudo-point approximation framework using Power Expectation Propagation (Power EP) that unifies a large number of these pseudo-point approximations. Unlike much of the previous venerable work in this area, the new framework is built on standard methods for approximate inference (variational free-energy, EP and Power EP methods) rather than employing approximations to the probabilistic generative model itself. In this way, all of approximation is performed at `inference time' rather than at `modelling time' resolving awkward philosophical and empirical questions that trouble previous approaches. Crucially, we demonstrate that the new framework includes new pseudo-point approximation methods that outperform current approaches on regression and classification tasks.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"12 1","pages":"104:1-104:72"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17863/CAM.20846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123

Abstract

Gaussian processes (GPs) are flexible distributions over functions that enable high-level assumptions about unknown functions to be encoded in a parsimonious, flexible and general way. Although elegant, the application of GPs is limited by computational and analytical intractabilities that arise when data are sufficiently numerous or when employing non-Gaussian models. Consequently, a wealth of GP approximation schemes have been developed over the last 15 years to address these key limitations. Many of these schemes employ a small set of pseudo data points to summarise the actual data. In this paper, we develop a new pseudo-point approximation framework using Power Expectation Propagation (Power EP) that unifies a large number of these pseudo-point approximations. Unlike much of the previous venerable work in this area, the new framework is built on standard methods for approximate inference (variational free-energy, EP and Power EP methods) rather than employing approximations to the probabilistic generative model itself. In this way, all of approximation is performed at `inference time' rather than at `modelling time' resolving awkward philosophical and empirical questions that trouble previous approaches. Crucially, we demonstrate that the new framework includes new pseudo-point approximation methods that outperform current approaches on regression and classification tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于功率期望传播的高斯过程伪点逼近的统一框架
高斯过程(gp)是函数上的灵活分布,它使对未知函数的高级假设能够以简洁、灵活和通用的方式进行编码。虽然很优雅,但GPs的应用受到计算和分析方面的困难的限制,这些困难会在数据足够多或采用非高斯模型时出现。因此,在过去的15年中,已经开发了大量的GP近似方案来解决这些关键限制。这些方案中的许多都使用一小部分伪数据点来总结实际数据。在本文中,我们利用功率期望传播(Power EP)建立了一个新的伪点逼近框架,它统一了大量的伪点逼近。与该领域之前的许多令人尊敬的工作不同,新框架建立在近似推理的标准方法(变分自由能,EP和Power EP方法)上,而不是使用概率生成模型本身的近似。通过这种方式,所有的近似都是在“推理时间”而不是在“建模时间”进行的,解决了困扰以前方法的尴尬的哲学和经验问题。至关重要的是,我们证明了新的框架包括新的伪点近似方法,在回归和分类任务上优于当前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Computation of Causal Bounds A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning Adaptive False Discovery Rate Control with Privacy Guarantee Fairlearn: Assessing and Improving Fairness of AI Systems Generalization Bounds for Adversarial Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1