C. Barna, Mark Shtern, Michael Smit, Vassilios Tzerpos, Marin Litoiu
{"title":"Mitigating DoS Attacks Using Performance Model-Driven Adaptive Algorithms","authors":"C. Barna, Mark Shtern, Michael Smit, Vassilios Tzerpos, Marin Litoiu","doi":"10.1145/2567926","DOIUrl":null,"url":null,"abstract":"Denial of Service (DoS) attacks overwhelm online services, preventing legitimate users from accessing a service, often with impact on revenue or consumer trust. Approaches exist to filter network-level attacks, but application-level attacks are harder to detect at the firewall. Filtering at this level can be computationally expensive and difficult to scale, while still producing false positives that block legitimate users.\n This article presents a model-based adaptive architecture and algorithm for detecting DoS attacks at the web application level and mitigating them. Using a performance model to predict the impact of arriving requests, a decision engine adaptively generates rules for filtering traffic and sending suspicious traffic for further review, where the end user is given the opportunity to demonstrate they are a legitimate user. If no legitimate user responds to the challenge, the request is dropped. Experiments performed on a scalable implementation demonstrate effective mitigation of attacks launched using a real-world DoS attack tool.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"4 1","pages":"3:1-3:26"},"PeriodicalIF":2.2000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2567926","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10
Abstract
Denial of Service (DoS) attacks overwhelm online services, preventing legitimate users from accessing a service, often with impact on revenue or consumer trust. Approaches exist to filter network-level attacks, but application-level attacks are harder to detect at the firewall. Filtering at this level can be computationally expensive and difficult to scale, while still producing false positives that block legitimate users.
This article presents a model-based adaptive architecture and algorithm for detecting DoS attacks at the web application level and mitigating them. Using a performance model to predict the impact of arriving requests, a decision engine adaptively generates rules for filtering traffic and sending suspicious traffic for further review, where the end user is given the opportunity to demonstrate they are a legitimate user. If no legitimate user responds to the challenge, the request is dropped. Experiments performed on a scalable implementation demonstrate effective mitigation of attacks launched using a real-world DoS attack tool.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.