The use of plant extracts and bacteriophages as an alternative therapy approach in combatting bacterial infections: the study of lytic phages and Stevia rebaudiana
Xymena Stachurska, M. Mizielińska, M. Ordon, P. Nawrotek
{"title":"The use of plant extracts and bacteriophages as an alternative therapy approach in combatting bacterial infections: the study of lytic phages and Stevia rebaudiana","authors":"Xymena Stachurska, M. Mizielińska, M. Ordon, P. Nawrotek","doi":"10.1101/2023.06.27.546765","DOIUrl":null,"url":null,"abstract":"Abstract Introduction In the light of the problem of antibiotic resistance, the use of combined alternative therapies in combatting bacteria-related disorders has gained popularity. Bacteriophages are one element implemented in new combination therapy. Stevia rebaudiana is known to have antimicrobial activity and regarded as potentially having a synergistic effect with bacteriophages. Therefore, possible interactions of lytic bacteriophages (MS2, T4 and Phi6) with acetone and methanol S. rebaudiana extracts (SRa and SRm) in the bacterial environment were examined. Material and Methods The interactions were tested using a microdilution method, phage-extract co-incubation assay, static interaction (synography) and dynamic growth profile experiments in a bioreactor. Results The interactions of the tested factors in a static environment differed from those in a dynamic environment. Dynamic conditions altered the effect of the extracts in a concentration-dependent manner. How different the effect of the SRa extract was to that of the SRm extract on bacterial growth in a dynamic environment depended on the species of the phage and bacterial host. The greatest differences were observed for E. coli strains and their phages, whereas Pseudomonas syringae and the Phi6 phage reacted very similarly to both extracts. Differences also emerged for the same extract in different E. coli strains and their phages. Conclusion Every extract type should be tested on a case-by-case basis and experiment outcomes should not be generalised before gathering data. Moreover, many varied experiments should be performed, especially when examining such multifactorial mixtures. The tested mixtures could potentially be used in multidrug-resistant bacterial infection treatments.","PeriodicalId":54685,"journal":{"name":"Onderstepoort Journal of Veterinary Research","volume":"31 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Onderstepoort Journal of Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1101/2023.06.27.546765","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Introduction In the light of the problem of antibiotic resistance, the use of combined alternative therapies in combatting bacteria-related disorders has gained popularity. Bacteriophages are one element implemented in new combination therapy. Stevia rebaudiana is known to have antimicrobial activity and regarded as potentially having a synergistic effect with bacteriophages. Therefore, possible interactions of lytic bacteriophages (MS2, T4 and Phi6) with acetone and methanol S. rebaudiana extracts (SRa and SRm) in the bacterial environment were examined. Material and Methods The interactions were tested using a microdilution method, phage-extract co-incubation assay, static interaction (synography) and dynamic growth profile experiments in a bioreactor. Results The interactions of the tested factors in a static environment differed from those in a dynamic environment. Dynamic conditions altered the effect of the extracts in a concentration-dependent manner. How different the effect of the SRa extract was to that of the SRm extract on bacterial growth in a dynamic environment depended on the species of the phage and bacterial host. The greatest differences were observed for E. coli strains and their phages, whereas Pseudomonas syringae and the Phi6 phage reacted very similarly to both extracts. Differences also emerged for the same extract in different E. coli strains and their phages. Conclusion Every extract type should be tested on a case-by-case basis and experiment outcomes should not be generalised before gathering data. Moreover, many varied experiments should be performed, especially when examining such multifactorial mixtures. The tested mixtures could potentially be used in multidrug-resistant bacterial infection treatments.
期刊介绍:
The Onderstepoort Journal of Veterinary Research, is the official publication of the Onderstepoort Veterinary Institute. While it considers submissions from any geographic region, its focus is on Africa and the infectious and parasitic diseases and disease vectors that affect livestock and wildlife on the continent.