Experimental Approach and Conventional Analytical Techniques to the Carbon Nanotube Network Interphase in 3-Phase Polymer Matrix Nano-Composites

Masoud Yekani Fard, Joel Swanstrom
{"title":"Experimental Approach and Conventional Analytical Techniques to the Carbon Nanotube Network Interphase in 3-Phase Polymer Matrix Nano-Composites","authors":"Masoud Yekani Fard, Joel Swanstrom","doi":"10.1115/imece2021-70589","DOIUrl":null,"url":null,"abstract":"\n The interaction between the CNT network and the surrounding polymer and between BP and the surrounding polymer occurs via interphase with different morphology than the bulk matrix. This interphase’s properties have not been given enough attention in the literature, and the purpose of this study is to investigate the interphase properties experimentally and analytically. Atomic Force Microscopy based Peak Force Quantitative Nanomechanics Mapping (PFQNM) technique with the high lateral resolution was used for the characterization of the interphase in 3-phase polymer matrix nano-composites at the nanoscale. Details of the calibration parameters such as probe stiffness, spring constant, tip radius, tapping force, deformation level, synchronous distance, drive3 amplitude sensitivity (DDS3), and deflection sensitivity were discussed. AFM Multimode 8, scanner type J with a maximum scanning window of 125μm × 125μm, was used. The Derjaguin, Muller, Toropov (DMT) equation was applied to the retract curve to calculate the elastic modulus. BP is heterogeneous at the nanoscale due to nonuniform resin impregnation. The average interphase thickness for the CNT network is 27nm in BP, higher than ∼10nm between epoxy and fiber, confirming stronger interphase. The CNT network size in BP nanocomposite is influenced by the inter-bundle and intra-bundle pores in the BP. The Kolarik, Quali, and Takayanagi models for interphase of the CNT network were investigated.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between the CNT network and the surrounding polymer and between BP and the surrounding polymer occurs via interphase with different morphology than the bulk matrix. This interphase’s properties have not been given enough attention in the literature, and the purpose of this study is to investigate the interphase properties experimentally and analytically. Atomic Force Microscopy based Peak Force Quantitative Nanomechanics Mapping (PFQNM) technique with the high lateral resolution was used for the characterization of the interphase in 3-phase polymer matrix nano-composites at the nanoscale. Details of the calibration parameters such as probe stiffness, spring constant, tip radius, tapping force, deformation level, synchronous distance, drive3 amplitude sensitivity (DDS3), and deflection sensitivity were discussed. AFM Multimode 8, scanner type J with a maximum scanning window of 125μm × 125μm, was used. The Derjaguin, Muller, Toropov (DMT) equation was applied to the retract curve to calculate the elastic modulus. BP is heterogeneous at the nanoscale due to nonuniform resin impregnation. The average interphase thickness for the CNT network is 27nm in BP, higher than ∼10nm between epoxy and fiber, confirming stronger interphase. The CNT network size in BP nanocomposite is influenced by the inter-bundle and intra-bundle pores in the BP. The Kolarik, Quali, and Takayanagi models for interphase of the CNT network were investigated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3相聚合物基纳米复合材料中碳纳米管网络界面的实验方法与传统分析技术
碳纳米管网络与周围聚合物之间的相互作用以及BP与周围聚合物之间的相互作用是通过与体基质不同形态的界面相发生的。这种间相的性质在文献中没有得到足够的重视,本研究的目的是通过实验和分析来研究间相的性质。采用基于原子力显微镜的高横向分辨率峰力定量纳米力学映射(PFQNM)技术在纳米尺度上表征了3相聚合物基纳米复合材料的界面相。详细讨论了探针刚度、弹簧常数、尖端半径、攻丝力、变形水平、同步距离、驱动振幅灵敏度(DDS3)和挠度灵敏度等标定参数。采用AFM Multimode 8, J型扫描仪,最大扫描窗口为125μm × 125μm。将Derjaguin, Muller, Toropov (DMT)方程应用于回弹曲线计算弹性模量。由于树脂浸渍不均匀,BP在纳米尺度上是不均匀的。碳纳米管网络的平均界面厚度为27nm (BP),环氧树脂和纤维之间的界面厚度高于~ 10nm (BP),证实界面更强。BP纳米复合材料的碳纳米管网络大小受BP束间孔和束内孔的影响。研究了碳纳米管网络间期的Kolarik、Quali和Takayanagi模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Tribological Performance of Laser Micro-Texturing Ti6Al4V Under Lubrication With Protic Ionic Liquid Strength and Quality of Recycled Acrylonitrile Butadiene Styrene (ABS) Crystalline Phase Changes Due to High-Speed Projectiles Impact on HY100 Steel Mechanical Properties of Snap-Fits Fabricated by Selective Laser Sintering From Polyamide Chemical Structure Analysis of Carbon-Doped Silicon Oxide Thin Films by Plasma-Enhanced Chemical Vapor Deposition of Tetrakis(Trimethylsilyloxy)Silane Precursor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1