Uses of a new asymmetric loss-based process capability index in the electronic industries

Mahendra Saha, S. Dey
{"title":"Uses of a new asymmetric loss-based process capability index in the electronic industries","authors":"Mahendra Saha, S. Dey","doi":"10.1080/23737484.2023.2207499","DOIUrl":null,"url":null,"abstract":"Abstract This article suggests a novel process capability index (PCI) termed as , which is based on an asymmetric loss function (linear exponential) for a normal process and offers a specific method of incorporating the loss in capability analysis. Next, we estimate the suggested PCI using the moment estimation approach when the process follows a normal distribution, and we compare the effectiveness of the investigated estimation methods in terms of their mean squared errors through simulation analysis. Additionally, the confidence intervals for the index are constructed using the generalized confidence interval (GCI) and parametric bootstrap confidence interval (BCI) approach. Using Monte Carlo simulation, the performance of the GCI and BCI is compared in terms of average width, associated coverage probabilities, and relative coverage. Finally, three real data sets from the electronic industries are re-analyzed to show the usefulness of the suggested index, MOM estimation, GCI and BCI.","PeriodicalId":36561,"journal":{"name":"Communications in Statistics Case Studies Data Analysis and Applications","volume":"6 1","pages":"135 - 151"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Statistics Case Studies Data Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737484.2023.2207499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This article suggests a novel process capability index (PCI) termed as , which is based on an asymmetric loss function (linear exponential) for a normal process and offers a specific method of incorporating the loss in capability analysis. Next, we estimate the suggested PCI using the moment estimation approach when the process follows a normal distribution, and we compare the effectiveness of the investigated estimation methods in terms of their mean squared errors through simulation analysis. Additionally, the confidence intervals for the index are constructed using the generalized confidence interval (GCI) and parametric bootstrap confidence interval (BCI) approach. Using Monte Carlo simulation, the performance of the GCI and BCI is compared in terms of average width, associated coverage probabilities, and relative coverage. Finally, three real data sets from the electronic industries are re-analyzed to show the usefulness of the suggested index, MOM estimation, GCI and BCI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于非对称损耗的过程能力指数在电子工业中的应用
本文提出了一种基于非对称损失函数(线性指数)的新型过程能力指数(PCI),并提供了一种将损失纳入能力分析的具体方法。接下来,当过程服从正态分布时,我们使用矩估计方法估计建议的PCI,并通过仿真分析比较所研究的估计方法的均方误差的有效性。此外,采用广义置信区间(GCI)和参数自举置信区间(BCI)方法构造了指数的置信区间。通过蒙特卡罗模拟,比较了GCI和BCI在平均宽度、相关覆盖概率和相对覆盖方面的性能。最后,对三个电子行业的真实数据集进行了重新分析,以证明建议指数、MOM估计、GCI和BCI的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
29
期刊最新文献
The reciprocal elastic net Detection of influential observations in high-dimensional survival data Small area estimation of trends in household living standards in Uganda using a GMANOVA-MANOVA model and repeated surveys Applications of a new loss and cost-based process capability index to electronic industries A methodological framework for imputing missing spatial data at an aggregate level and guaranteeing data privacy: the AFFINITY method; implementation in the context of the official spatial Greek census data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1