A Max-Margin Riffled Independence Model for Image Tag Ranking

Tian Lan, Greg Mori
{"title":"A Max-Margin Riffled Independence Model for Image Tag Ranking","authors":"Tian Lan, Greg Mori","doi":"10.1109/CVPR.2013.399","DOIUrl":null,"url":null,"abstract":"We propose Max-Margin Riffled Independence Model (MMRIM), a new method for image tag ranking modeling the structured preferences among tags. The goal is to predict a ranked tag list for a given image, where tags are ordered by their importance or relevance to the image content. Our model integrates the max-margin formalism with riffled independence factorizations proposed in [10], which naturally allows for structured learning and efficient ranking. Experimental results on the SUN Attribute and Label Me datasets demonstrate the superior performance of the proposed model compared with baseline tag ranking methods. We also apply the predicted rank list of tags to several higher-level computer vision applications in image understanding and retrieval, and demonstrate that MMRIM significantly improves the accuracy of these applications.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"31 1","pages":"3103-3110"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We propose Max-Margin Riffled Independence Model (MMRIM), a new method for image tag ranking modeling the structured preferences among tags. The goal is to predict a ranked tag list for a given image, where tags are ordered by their importance or relevance to the image content. Our model integrates the max-margin formalism with riffled independence factorizations proposed in [10], which naturally allows for structured learning and efficient ranking. Experimental results on the SUN Attribute and Label Me datasets demonstrate the superior performance of the proposed model compared with baseline tag ranking methods. We also apply the predicted rank list of tags to several higher-level computer vision applications in image understanding and retrieval, and demonstrate that MMRIM significantly improves the accuracy of these applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像标签排序的最大边界riffle独立模型
本文提出了一种新的图像标签排序方法——最大边界riffle独立模型(MMRIM)。目标是预测给定图像的排名标签列表,其中标签根据其重要性或与图像内容的相关性排序。我们的模型将[10]中提出的最大边际形式主义与独立分解相结合,自然允许结构化学习和高效排序。在SUN Attribute和Label Me数据集上的实验结果表明,与基线标签排序方法相比,该模型具有更好的性能。我们还将预测的标签排名列表应用于图像理解和检索中的几个高级计算机视觉应用,并证明MMRIM显著提高了这些应用的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segment-Tree Based Cost Aggregation for Stereo Matching Event Retrieval in Large Video Collections with Circulant Temporal Encoding Articulated and Restricted Motion Subspaces and Their Signatures Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation Learning Video Saliency from Human Gaze Using Candidate Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1