{"title":"Weakly Supervised Segmentation of Small Buildings with Point Labels","authors":"Jae-Hun Lee, ChanYoung Kim, S. Sull","doi":"10.1109/ICCV48922.2021.00731","DOIUrl":null,"url":null,"abstract":"Most supervised image segmentation methods require delicate and time-consuming pixel-level labeling of building or objects, especially for small objects. In this paper, we present a weakly supervised segmentation network for aerial/satellite images, separately considering small and large objects. First, we propose a simple point labeling method for small objects, while large objects are fully labeled. Then, we present a segmentation network trained with a small object mask to separate small and large objects in the loss function. During training, we employ a memory bank to cope with the limited number of point labels. Experiments results with three public datasets demonstrate the feasibility of our approach.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"17 1","pages":"7386-7395"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Most supervised image segmentation methods require delicate and time-consuming pixel-level labeling of building or objects, especially for small objects. In this paper, we present a weakly supervised segmentation network for aerial/satellite images, separately considering small and large objects. First, we propose a simple point labeling method for small objects, while large objects are fully labeled. Then, we present a segmentation network trained with a small object mask to separate small and large objects in the loss function. During training, we employ a memory bank to cope with the limited number of point labels. Experiments results with three public datasets demonstrate the feasibility of our approach.