Effect of Quercetin and Intermittent and Continuous Exercise on Catalase, Superoxide dismutase, and Malondialdehyde in the Heart of Rats with Colon Cancer
Behrooz Talaei, Mohammad Panji, Fatemeh Zahra Nazari Robati, Sajjad Tezerji
{"title":"Effect of Quercetin and Intermittent and Continuous Exercise on Catalase, Superoxide dismutase, and Malondialdehyde in the Heart of Rats with Colon Cancer","authors":"Behrooz Talaei, Mohammad Panji, Fatemeh Zahra Nazari Robati, Sajjad Tezerji","doi":"10.18502/BCCR.V12I1.5733","DOIUrl":null,"url":null,"abstract":"Background: Colorectal cancer is the fourth leading cause of death globally, and the second most common cancer in Europe. About 8% of all cancer-related deaths occur due to colorectal cancer, and the highest prevalence has been reported in Asia and Eastern Europe. Methods: In this experimental study, 80 rats were divided into two groups of cases (n=70) and controls (n=10). Colorectal cancer was induced weekly in rats by subcutaneous injection of 15 mg/kg Azoxymethane. The rats were then divided into 7 experimental subgroups of patients, saline, quercetin, intermittent exercise, continuous exercise, quercetin plus intermittent, and quercetin plus continuous exercise. Oxidative stress biomarkers, including superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were measured in the rats’ heart tissue by the ELISA method. Data were analyzed using ANOVA by SPSS software. Results: Oxidative stress in heart cells increased due to colorectal cancer. Quercetin alone or in combination with exercise significantly increased mean levels of CAT and SOD in the heart tissue of rats compared with patient and saline groups (P<0.0001). In contrast, the MDA level was significantly decreased (P<0.05). Conclusion: Colorectal cancer increased the oxidative stress in cardiac cells. Quercetin alone improved oxidative stress in cardiac tissue, and its combination with exercise was more effective.","PeriodicalId":8706,"journal":{"name":"Basic & Clinical Cancer Research","volume":"4 1","pages":"34-41"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic & Clinical Cancer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/BCCR.V12I1.5733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Colorectal cancer is the fourth leading cause of death globally, and the second most common cancer in Europe. About 8% of all cancer-related deaths occur due to colorectal cancer, and the highest prevalence has been reported in Asia and Eastern Europe. Methods: In this experimental study, 80 rats were divided into two groups of cases (n=70) and controls (n=10). Colorectal cancer was induced weekly in rats by subcutaneous injection of 15 mg/kg Azoxymethane. The rats were then divided into 7 experimental subgroups of patients, saline, quercetin, intermittent exercise, continuous exercise, quercetin plus intermittent, and quercetin plus continuous exercise. Oxidative stress biomarkers, including superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were measured in the rats’ heart tissue by the ELISA method. Data were analyzed using ANOVA by SPSS software. Results: Oxidative stress in heart cells increased due to colorectal cancer. Quercetin alone or in combination with exercise significantly increased mean levels of CAT and SOD in the heart tissue of rats compared with patient and saline groups (P<0.0001). In contrast, the MDA level was significantly decreased (P<0.05). Conclusion: Colorectal cancer increased the oxidative stress in cardiac cells. Quercetin alone improved oxidative stress in cardiac tissue, and its combination with exercise was more effective.