{"title":"Marchenko–Pastur law with relaxed independence conditions","authors":"Jennifer Bryson, R. Vershynin, Hongkai Zhao","doi":"10.1142/s2010326321500404","DOIUrl":null,"url":null,"abstract":"We prove the Marchenko–Pastur law for the eigenvalues of [Formula: see text] sample covariance matrices in two new situations where the data does not have independent coordinates. In the first scenario — the block-independent model — the [Formula: see text] coordinates of the data are partitioned into blocks in such a way that the entries in different blocks are independent, but the entries from the same block may be dependent. In the second scenario — the random tensor model — the data is the homogeneous random tensor of order [Formula: see text], i.e. the coordinates of the data are all [Formula: see text] different products of [Formula: see text] variables chosen from a set of [Formula: see text] independent random variables. We show that Marchenko–Pastur law holds for the block-independent model as long as the size of the largest block is [Formula: see text], and for the random tensor model as long as [Formula: see text]. Our main technical tools are new concentration inequalities for quadratic forms in random variables with block-independent coordinates, and for random tensors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
We prove the Marchenko–Pastur law for the eigenvalues of [Formula: see text] sample covariance matrices in two new situations where the data does not have independent coordinates. In the first scenario — the block-independent model — the [Formula: see text] coordinates of the data are partitioned into blocks in such a way that the entries in different blocks are independent, but the entries from the same block may be dependent. In the second scenario — the random tensor model — the data is the homogeneous random tensor of order [Formula: see text], i.e. the coordinates of the data are all [Formula: see text] different products of [Formula: see text] variables chosen from a set of [Formula: see text] independent random variables. We show that Marchenko–Pastur law holds for the block-independent model as long as the size of the largest block is [Formula: see text], and for the random tensor model as long as [Formula: see text]. Our main technical tools are new concentration inequalities for quadratic forms in random variables with block-independent coordinates, and for random tensors.