Laser Induced Graphene/Silicon Carbide: Core–Shell Structure, Multifield Coupling Effects, and Pressure Sensor Applications

Longsheng Lu, D. Zhang, Yingxi Xie, Heng-fei He, Wentao Wang
{"title":"Laser Induced Graphene/Silicon Carbide: Core–Shell Structure, Multifield Coupling Effects, and Pressure Sensor Applications","authors":"Longsheng Lu, D. Zhang, Yingxi Xie, Heng-fei He, Wentao Wang","doi":"10.1002/admt.202200441","DOIUrl":null,"url":null,"abstract":"Latest advances have witnessed the laser scribing of various active materials from synthetic polymers to natural sources without masks, post‐treatment, or toxic substances. However, laser induced graphene (LIG) on renewable precursors usually requires flame‐retardant pretreatment and multistep pulsed or defocused irradiation. Laser scribing of silicon carbide (SiC) from polydimethylsiloxane (PDMS) is limited by its high transparency over a broad wavelength range. Here, a structural design strategy is adopted to solve these two dilemmas at the same time, that is, laser scribing of carbonized cloth/PDMS to prepare LIG/SiC composites. Natural cotton cloth is precarbonized and inserted in PDMS substrate to facilitate heat absorption for the in situ formation of SiC, while the soft PDMS attached to the carbonized cloth absorbs heat and isolates oxygen, enabling the conversion of amorphous carbon to LIG. Under these multifield coupling effects, a core–shell LIG/SiC electrode is formed on the carbonized cloth with tunable mass ratio, morphology, and graphene defects. Experimentally, the LIG/SiC pressure sensor exhibits a good sensitivity of 1.91 kPa−1 in the super‐wide sensing range of 0–226.7 kPa. By demonstrating different scenarios such as real‐time monitoring of large body movements, tiny pulses and heartbeats, the flexible pressure sensors hold great promise in wearable electronics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Latest advances have witnessed the laser scribing of various active materials from synthetic polymers to natural sources without masks, post‐treatment, or toxic substances. However, laser induced graphene (LIG) on renewable precursors usually requires flame‐retardant pretreatment and multistep pulsed or defocused irradiation. Laser scribing of silicon carbide (SiC) from polydimethylsiloxane (PDMS) is limited by its high transparency over a broad wavelength range. Here, a structural design strategy is adopted to solve these two dilemmas at the same time, that is, laser scribing of carbonized cloth/PDMS to prepare LIG/SiC composites. Natural cotton cloth is precarbonized and inserted in PDMS substrate to facilitate heat absorption for the in situ formation of SiC, while the soft PDMS attached to the carbonized cloth absorbs heat and isolates oxygen, enabling the conversion of amorphous carbon to LIG. Under these multifield coupling effects, a core–shell LIG/SiC electrode is formed on the carbonized cloth with tunable mass ratio, morphology, and graphene defects. Experimentally, the LIG/SiC pressure sensor exhibits a good sensitivity of 1.91 kPa−1 in the super‐wide sensing range of 0–226.7 kPa. By demonstrating different scenarios such as real‐time monitoring of large body movements, tiny pulses and heartbeats, the flexible pressure sensors hold great promise in wearable electronics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光诱导石墨烯/碳化硅:核壳结构、多场耦合效应和压力传感器应用
最新的进展见证了激光刻划各种活性材料,从合成聚合物到天然来源,没有口罩,后处理,或有毒物质。然而,在可再生前驱体上激光诱导石墨烯(LIG)通常需要阻燃预处理和多步脉冲或散焦辐照。聚二甲基硅氧烷(PDMS)激光刻划碳化硅(SiC)受其在宽波长范围内的高透明度的限制。本文采用一种同时解决这两种困境的结构设计策略,即对碳化布/PDMS进行激光刻划制备LIG/SiC复合材料。将天然棉布预碳化后插入PDMS衬底中,有利于吸热,原位生成SiC,而附着在碳化布上的软PDMS吸收热量,隔离氧气,使无定形碳转化为LIG。在这些多场耦合作用下,在炭化布上形成了具有可调质量比、形貌和石墨烯缺陷的核壳LIG/SiC电极。实验结果表明,LIG/SiC压力传感器在0-226.7 kPa的超宽传感范围内具有1.91 kPa−1的良好灵敏度。通过展示不同的场景,如实时监测大的身体运动,微小的脉冲和心跳,柔性压力传感器在可穿戴电子产品中具有很大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Printing and Biomedical Applications of Piezoelectric Composites: A Critical Review Wireless Power and Data Transfer Technologies for Flexible Bionic and Bioelectronic Interfaces: Materials and Applications Tunable Chemical Reactivity and Selectivity of WO3/TiO2 Heterojunction for Gas Sensing Applications Highly Sensitive Wearable Pressure Sensor Over a Wide Sensing Range Enabled by the Skin Surface‐Like 3D Patterned Interwoven Structure Inkjet Printing of Quasi‐2D Perovskite Layers with Optimized Drying Protocol for Efficient Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1