Development of silver film coating on dental ti15mo alloy to enhance two-body wear resistance, biocompatibility and cytotoxicity effect

E. Meletlioğlu, R. Sadeler, S. Keleş
{"title":"Development of silver film coating on dental ti15mo alloy to enhance two-body wear resistance, biocompatibility and cytotoxicity effect","authors":"E. Meletlioğlu, R. Sadeler, S. Keleş","doi":"10.1590/1517-7076-rmat-2023-0044","DOIUrl":null,"url":null,"abstract":"The basic aim of this in vitro study was to investigate the effects of different silver deposition times on the two-body wear, antibacterial and cytotoxicity properties of silver ions on Ti15Mo alloy. The direct current (DC) magnetron sputtering technique was used to create silver films at different times (30, 45 and 60 minutes); the experimental setup was predetermined. The phase structures, cross-sectional morphology, surface roughness, two-body wear behavior, antibacterial and cytotoxicity properties of all specimens were researched in detail. The surfaces of all films showed a homogeneous distribution. It was observed that silver films enhanced the two-body wear resistance of Ti15Mo alloys. Furthermore, significant correlations were discovered between hardness, surface roughness and wear volume loss. Compared to Ti15Mo alloys, the antibacterial and cytotoxicity test results showed that silver films deposited 30 and 45 min had superior antibacterial and biocompatibility properties.","PeriodicalId":18246,"journal":{"name":"Matéria (Rio de Janeiro)","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matéria (Rio de Janeiro)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1517-7076-rmat-2023-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The basic aim of this in vitro study was to investigate the effects of different silver deposition times on the two-body wear, antibacterial and cytotoxicity properties of silver ions on Ti15Mo alloy. The direct current (DC) magnetron sputtering technique was used to create silver films at different times (30, 45 and 60 minutes); the experimental setup was predetermined. The phase structures, cross-sectional morphology, surface roughness, two-body wear behavior, antibacterial and cytotoxicity properties of all specimens were researched in detail. The surfaces of all films showed a homogeneous distribution. It was observed that silver films enhanced the two-body wear resistance of Ti15Mo alloys. Furthermore, significant correlations were discovered between hardness, surface roughness and wear volume loss. Compared to Ti15Mo alloys, the antibacterial and cytotoxicity test results showed that silver films deposited 30 and 45 min had superior antibacterial and biocompatibility properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牙用ti15mo合金银膜涂层的研制,提高两体耐磨性、生物相容性和细胞毒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rheological properties and engineering application of low-grade asphalt mixture Study on the performance and aging low temperature performance of GO / SBS modified asphalt Statistical optimization of fibre reinforced polymer concrete made with recycled plastic aggregates by central composite design Effects of Nb and V microalloying on the thermoplasticity of new martensitic low-density steels Influence of presaturated coconut fibre ash pellets in concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1