Ultra-wideband Flexible Implantable Antenna for Wireless Capsule Endoscopy System with Performance Improvement

IF 0.6 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Applied Computational Electromagnetics Society Journal Pub Date : 2021-01-01 DOI:10.47037/2020.aces.j.360618
Yang Feng, Pan Chen, Shaopeng Pan, Gaosheng Li
{"title":"Ultra-wideband Flexible Implantable Antenna for Wireless Capsule Endoscopy System with Performance Improvement","authors":"Yang Feng, Pan Chen, Shaopeng Pan, Gaosheng Li","doi":"10.47037/2020.aces.j.360618","DOIUrl":null,"url":null,"abstract":"The implantable antenna is an important part of the wireless capsule endoscopy (WCE) system to achieve wireless communication. This paper designed an ultra-wideband flexible implantable antenna for wireless capsule endoscopy system. With a very wide bandwidth, the antenna can completely cover the industrial, scientific, and medical frequency bands (ISM, 2.4-2.48 GHz) and Wireless Medical Telemetry Service (WMTS, 1.395-1.4 GHz). The expanded size of the proposed antenna is 18mm× 10mm× 0.1mm. The conformal technology of the antenna has further reduced the space of the system and achieved miniaturization. The capsule antenna in this paper is a compact planar monopole antenna fed by a coplanar waveguide, and it uses a flexible material as a dielectric substrate to achieve the conformal shape of the antenna. U-shaped ground branch (UGB) and a loaded split ring resonator (SRR) structure were used to further improve the antenna performance. Simulation and measurement results were basically the same. On the premise of radiation safety and miniaturization of the antenna, the ultra-wideband operation of the antenna was realized. This antenna design provided reference value for the design and application of the capsule antenna.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.47037/2020.aces.j.360618","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The implantable antenna is an important part of the wireless capsule endoscopy (WCE) system to achieve wireless communication. This paper designed an ultra-wideband flexible implantable antenna for wireless capsule endoscopy system. With a very wide bandwidth, the antenna can completely cover the industrial, scientific, and medical frequency bands (ISM, 2.4-2.48 GHz) and Wireless Medical Telemetry Service (WMTS, 1.395-1.4 GHz). The expanded size of the proposed antenna is 18mm× 10mm× 0.1mm. The conformal technology of the antenna has further reduced the space of the system and achieved miniaturization. The capsule antenna in this paper is a compact planar monopole antenna fed by a coplanar waveguide, and it uses a flexible material as a dielectric substrate to achieve the conformal shape of the antenna. U-shaped ground branch (UGB) and a loaded split ring resonator (SRR) structure were used to further improve the antenna performance. Simulation and measurement results were basically the same. On the premise of radiation safety and miniaturization of the antenna, the ultra-wideband operation of the antenna was realized. This antenna design provided reference value for the design and application of the capsule antenna.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进无线胶囊内窥镜系统的超宽带柔性植入式天线
植入式天线是无线胶囊内窥镜(WCE)系统实现无线通信的重要组成部分。设计了一种用于无线胶囊内窥镜系统的超宽带柔性植入式天线。该天线具有非常宽的带宽,可以完全覆盖工业、科学和医疗频段(ISM, 2.4-2.48 GHz)和无线医疗遥测服务(WMTS, 1.395-1.4 GHz)。天线的扩展尺寸为18mm× 10mm× 0.1mm。天线的保形技术进一步缩小了系统的空间,实现了小型化。本文的胶囊天线是一种紧凑的平面单极天线,采用共面波导馈电,采用柔性材料作为电介质衬底,实现了天线的共形。采用u型接地支路(UGB)和负载分环谐振器(SRR)结构,进一步提高了天线性能。仿真结果与实测结果基本一致。在保证天线辐射安全和小型化的前提下,实现了天线的超宽带工作。该天线设计为胶囊天线的设计和应用提供了参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
28.60%
发文量
75
审稿时长
9 months
期刊介绍: The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study. The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed. A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected. The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.
期刊最新文献
Electromagnetic and Thermal Analysis of a 6/4 Induction Switched Reluctance Machine for Electric Vehicle Application Synthesis of Elliptical Antenna Array using Hybrid SSWOA Algorithm Temperature Controlled Terahertz Absorbers based on Omega Resonators A Simple Interference and Power-based Direction of Arrival Measuring System for Modern Communication A Wideband, High Gain and Low Sidelobe Array Antenna for Modern ETC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1