S. Zaichenko, K. Pochka, Yurii O. Romasevych, V. Shalenko, R. Kulish, M. Balaka
{"title":"Determination of Elements Reliability for Power Plants Based on Internal Combustion Engines by Lowest Residual Entropy Method","authors":"S. Zaichenko, K. Pochka, Yurii O. Romasevych, V. Shalenko, R. Kulish, M. Balaka","doi":"10.15407/pmach2023.01.039","DOIUrl":null,"url":null,"abstract":"The selection technique of diagnostic parameters for the creation of fault detection system of autonomous electric power sources based on gasoline and diesel engines is given in the paper. An analysis of the design features for autonomous electric power sources based on internal combustion engines, which are the most common on the Ukrainian market, was carried out. Thanks to this, a logical model of the research object, which establishes the relation between the main structural elements of the system and determines the possible states of the system, was developed. The effect of fault state initiation for each element on the other system elements was analyzed. An informative criterion – Shannon information entropy is proposed to determine the finite number of diagnostic parameters among the infinite number of possible combinations for physical parameters that characterize the system. The equal-probable cases of exit from operational state of each system elements are considered. The residual entropies of the system at the fault state for one of the autonomous power sources assembly are determined, having applied the concept of Shannon information entropy. The residual entropy value is the informative criterion. The application of this criterion allowed to determine the system elements that most effectively reduce the system uncertainty degree. Based on the residual entropy values, the system assemblies, the state of which should be primarily monitored by diagnostic system, are selected. The diagnostic parameters are determined for such elements, and the ways to obtain them are given","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"68 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pmach2023.01.039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The selection technique of diagnostic parameters for the creation of fault detection system of autonomous electric power sources based on gasoline and diesel engines is given in the paper. An analysis of the design features for autonomous electric power sources based on internal combustion engines, which are the most common on the Ukrainian market, was carried out. Thanks to this, a logical model of the research object, which establishes the relation between the main structural elements of the system and determines the possible states of the system, was developed. The effect of fault state initiation for each element on the other system elements was analyzed. An informative criterion – Shannon information entropy is proposed to determine the finite number of diagnostic parameters among the infinite number of possible combinations for physical parameters that characterize the system. The equal-probable cases of exit from operational state of each system elements are considered. The residual entropies of the system at the fault state for one of the autonomous power sources assembly are determined, having applied the concept of Shannon information entropy. The residual entropy value is the informative criterion. The application of this criterion allowed to determine the system elements that most effectively reduce the system uncertainty degree. Based on the residual entropy values, the system assemblies, the state of which should be primarily monitored by diagnostic system, are selected. The diagnostic parameters are determined for such elements, and the ways to obtain them are given
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.