Spherical Blue Noise

Kin-Ming Wong, T. Wong
{"title":"Spherical Blue Noise","authors":"Kin-Ming Wong, T. Wong","doi":"10.2312/pg.20181267","DOIUrl":null,"url":null,"abstract":"We present a physically based method which generates unstructured uniform point set directly on the S2-sphere. Spherical uniform point sets are useful for illumination sampling in Quasi Monte Carlo (QMC) rendering but it is challenging to generate high quality uniform point sets directly. Most methods rely on mapping the low discrepancy unit square point sets to the spherical domain. However, these transformed point sets often exhibit sub-optimal uniformity due to the inability of preserving the low discrepancy properties. Our method is designed specifically for direct generation of uniform point sets in the spherical domain. We name our generated result as Spherical Blue Noise point set because it shares similar point distribution characteristics with the 2D blue noise. Our point sets possess high spatial uniformity without a global structure, and we show that they deliver competitive results for illumination integration in QMC rendering, and general numerical integration on the spherical domain. CCS Concepts •Computing methodologies → Ray tracing;","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"3 1","pages":"5-8"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20181267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a physically based method which generates unstructured uniform point set directly on the S2-sphere. Spherical uniform point sets are useful for illumination sampling in Quasi Monte Carlo (QMC) rendering but it is challenging to generate high quality uniform point sets directly. Most methods rely on mapping the low discrepancy unit square point sets to the spherical domain. However, these transformed point sets often exhibit sub-optimal uniformity due to the inability of preserving the low discrepancy properties. Our method is designed specifically for direct generation of uniform point sets in the spherical domain. We name our generated result as Spherical Blue Noise point set because it shares similar point distribution characteristics with the 2D blue noise. Our point sets possess high spatial uniformity without a global structure, and we show that they deliver competitive results for illumination integration in QMC rendering, and general numerical integration on the spherical domain. CCS Concepts •Computing methodologies → Ray tracing;
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
球形蓝噪声
提出了一种在s2球上直接生成非结构化均匀点集的物理方法。球面均匀点集是准蒙特卡罗(Quasi Monte Carlo, QMC)渲染中照明采样的有效方法,但直接生成高质量的均匀点集具有一定的挑战性。大多数方法依赖于将低差异单位正方形点集映射到球面域。然而,这些变换后的点集往往表现出次优均匀性,因为不能保持低差异的性质。我们的方法是专门为在球面上直接生成均匀点集而设计的。我们将生成的结果命名为球形蓝噪声点集,因为它与二维蓝噪声具有相似的点分布特征。我们的点集在没有全局结构的情况下具有高空间均匀性,并且我们表明它们在QMC渲染中的照明集成以及球面上的一般数值集成方面提供了具有竞争力的结果。CCS概念•计算方法→光线追踪;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud-Assisted Hybrid Rendering for Thin-Client Games and VR Applications Interactive Deformable Image Registration with Dual Cursor DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology Aesthetic Enhancement via Color Area and Location Awareness Learning a Style Space for Interactive Line Drawing Synthesis from Animated 3D Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1