Pembelajaran Mendalam Pengklasifikasi Ekspresi Wajah Manusia dengan Model Arsitektur Xception pada Metode Convolutional Neural Network

Purnawarman Musa, Wahid Khairul Anam, Saiful Bahri Musa, Witari Aryunani, Remi Senjaya, Puji Sularsih
{"title":"Pembelajaran Mendalam Pengklasifikasi Ekspresi Wajah Manusia dengan Model Arsitektur Xception pada Metode Convolutional Neural Network","authors":"Purnawarman Musa, Wahid Khairul Anam, Saiful Bahri Musa, Witari Aryunani, Remi Senjaya, Puji Sularsih","doi":"10.21107/rekayasa.v16i1.16974","DOIUrl":null,"url":null,"abstract":"Deep learning is a neural network that creates innovations that give computer-implanted problem-solving expertise. One of the principles of computer vision is a detection system with a vision framework that can identify things encountered in the same manner as a human vision system. Using an artificial intelligence-based Convolutional Neural Network (CNN) model with deep learning techniques, we present a face emotion identification system. The categorization of facial expressions will be utilized as the basis for a face recognition system trained using CNN. The applications are intended to use the OpenCV, Keras, and TensorFlow libraries as the backend. We were discussing the study on the best use of xception architectural models in facial expression recognition systems. Based on the results of these tests, the study obtained an increased accuracy value in training and data testing on an xception architecture model trained for facial expressions using the FER-2013 dataset, resulting in an accuracy value of 66% as well as the value of each average for precision (76%), recall (65%), and F1 score (63%).","PeriodicalId":31510,"journal":{"name":"Dinamika Rekayasa","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dinamika Rekayasa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/rekayasa.v16i1.16974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning is a neural network that creates innovations that give computer-implanted problem-solving expertise. One of the principles of computer vision is a detection system with a vision framework that can identify things encountered in the same manner as a human vision system. Using an artificial intelligence-based Convolutional Neural Network (CNN) model with deep learning techniques, we present a face emotion identification system. The categorization of facial expressions will be utilized as the basis for a face recognition system trained using CNN. The applications are intended to use the OpenCV, Keras, and TensorFlow libraries as the backend. We were discussing the study on the best use of xception architectural models in facial expression recognition systems. Based on the results of these tests, the study obtained an increased accuracy value in training and data testing on an xception architecture model trained for facial expressions using the FER-2013 dataset, resulting in an accuracy value of 66% as well as the value of each average for precision (76%), recall (65%), and F1 score (63%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类面部表情分类与Xception建筑学模型对神经对联性网络的深层研究
深度学习是一个神经网络,它创造创新,为计算机植入解决问题的专业知识。计算机视觉的原理之一是具有视觉框架的检测系统,该系统可以以与人类视觉系统相同的方式识别遇到的事物。利用基于人工智能的卷积神经网络(CNN)模型和深度学习技术,提出了一个人脸情绪识别系统。面部表情的分类将被用作使用CNN训练的人脸识别系统的基础。这些应用程序打算使用OpenCV、Keras和TensorFlow库作为后端。我们讨论了异常架构模型在面部表情识别系统中的最佳应用研究。基于这些测试的结果,该研究在使用FER-2013数据集训练面部表情的异常架构模型的训练和数据测试中获得了更高的准确率值,准确率值为66%,准确率(76%)、召回率(65%)和F1分数(63%)的平均值也达到了66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
24 weeks
期刊最新文献
UJI BEBAN DINAMIK DAN ANALISIS MODAL OPERASIONAL JEMBATAN BAJA KOMPOSIT UNDERPASS BEKAMBIT PERBANDINGAN DATA GEOLISTRIK DAN DATA SONDIR DALAM IDENTIFIKASI LAPISAN BAWAH PERMUKAAN DI KOTA PONTIANAK PERANAN BIM DALAM KONSTRUKSI PERUMAHAN PENDEKATAN ALGORITMA YOLO V5 UNTUK MENDETEKSI CACAT PRODUK MASKER IMPLEMENTASI INDEX MYSQL DAN SERVER-SIDE DATATABLES UNTUK OPTIMALISASI PEMROSESAN DATA SISTEM MBKM FIK BERBASIS CODEIGNITER 4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1