Monocular 3D Object Detection for Autonomous Driving

Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, S. Fidler, R. Urtasun
{"title":"Monocular 3D Object Detection for Autonomous Driving","authors":"Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, S. Fidler, R. Urtasun","doi":"10.1109/CVPR.2016.236","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to perform 3D object detection from a single monocular image in the domain of autonomous driving. Our method first aims to generate a set of candidate class-specific object proposals, which are then run through a standard CNN pipeline to obtain high-quality object detections. The focus of this paper is on proposal generation. In particular, we propose an energy minimization approach that places object candidates in 3D using the fact that objects should be on the ground-plane. We then score each candidate box projected to the image plane via several intuitive potentials encoding semantic segmentation, contextual information, size and location priors and typical object shape. Our experimental evaluation demonstrates that our object proposal generation approach significantly outperforms all monocular approaches, and achieves the best detection performance on the challenging KITTI benchmark, among published monocular competitors.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"43 1","pages":"2147-2156"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"795","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 795

Abstract

The goal of this paper is to perform 3D object detection from a single monocular image in the domain of autonomous driving. Our method first aims to generate a set of candidate class-specific object proposals, which are then run through a standard CNN pipeline to obtain high-quality object detections. The focus of this paper is on proposal generation. In particular, we propose an energy minimization approach that places object candidates in 3D using the fact that objects should be on the ground-plane. We then score each candidate box projected to the image plane via several intuitive potentials encoding semantic segmentation, contextual information, size and location priors and typical object shape. Our experimental evaluation demonstrates that our object proposal generation approach significantly outperforms all monocular approaches, and achieves the best detection performance on the challenging KITTI benchmark, among published monocular competitors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于自动驾驶的单目3D目标检测
本文的目标是从自动驾驶领域的单眼图像中进行3D目标检测。我们的方法首先旨在生成一组候选类特定对象建议,然后通过标准的CNN管道运行以获得高质量的对象检测。本文的研究重点是提案生成。特别是,我们提出了一种能量最小化方法,利用物体应该在地平面上的事实,将候选物体放置在3D中。然后,我们通过编码语义分割、上下文信息、大小和位置先验以及典型物体形状的几个直观电位对投影到图像平面上的每个候选框进行评分。我们的实验评估表明,我们的目标建议生成方法明显优于所有单眼方法,并在具有挑战性的KITTI基准测试中取得了最佳的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sketch Me That Shoe Multivariate Regression on the Grassmannian for Predicting Novel Domains How Hard Can It Be? Estimating the Difficulty of Visual Search in an Image Discovering the Physical Parts of an Articulated Object Class from Multiple Videos Simultaneous Optical Flow and Intensity Estimation from an Event Camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1