A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes

M. Eigel, C. J. Gittelson, C. Schwab, E. Zander
{"title":"A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes","authors":"M. Eigel, C. J. Gittelson, C. Schwab, E. Zander","doi":"10.3929/ETHZ-A-010386302","DOIUrl":null,"url":null,"abstract":"We analyze a posteriori error estimation and adaptive refinement algorithms for stochastic Galerkin Finite Element methods for countably-parametric, elliptic boundary value problems. A resid- ual error estimator which separates the effects of gpc-Galerkin discretization in parameter space and of the Finite Element discretization in physical space in energy norm is established. It is proved that the adaptive algorithm converges. To this end, a contraction property of its iterates is proved. It is shown that the sequences of triangulations which are produced by the algorithm in the FE discretization of the active gpc coefficients are asymptotically optimal. Numerical experiments illustrate the theoretical results.","PeriodicalId":22276,"journal":{"name":"The annual research report","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The annual research report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-A-010386302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

We analyze a posteriori error estimation and adaptive refinement algorithms for stochastic Galerkin Finite Element methods for countably-parametric, elliptic boundary value problems. A resid- ual error estimator which separates the effects of gpc-Galerkin discretization in parameter space and of the Finite Element discretization in physical space in energy norm is established. It is proved that the adaptive algorithm converges. To this end, a contraction property of its iterates is proved. It is shown that the sequences of triangulations which are produced by the algorithm in the FE discretization of the active gpc coefficients are asymptotically optimal. Numerical experiments illustrate the theoretical results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟最优空间网格的收敛自适应随机Galerkin有限元法
本文分析了随机伽辽金有限元法在可数参数椭圆边值问题上的后验误差估计和自适应改进算法。建立了一个残差估计器,将gpc-Galerkin离散在参数空间的影响与有限元离散在物理空间的影响在能量范数上分离开来。证明了自适应算法的收敛性。为此,证明了其迭代的一个收缩性质。结果表明,该算法对主动gpc系数进行有限元离散时得到的三角剖分序列是渐近最优的。数值实验验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ANALISA PERBANDINGAN PENGGUNAAN ATURAN PRIORITAS PENJADWALAN PADA PENJADWALAN NON DELAY N JOB 5 MACHINE KEMANDIRIAN FINANSIAL LEMBAGA PENDIDIKAN MELALUI ENTREPRENEURSHIP DAN PARTNERSHIP (Studi Kasus Al Ashriyyah Nurul Iman Islamic Boarding School Parung Bogor) Perancangan Desain Ranjang Untuk Ibu dan Bayi INTERVENSI CARE SUPPORT TREATMENT BERSASARAN ANAK DENGAN HIV/AIDS: SEBUAH MODEL PENDEKATAN HUMANISTIK BAGI ANAK DAN LINGKUNGANNYA DALAM MENGHADAPI STIGMA Hybrid Warfare: Preparing for Future Conflict
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1