Review of Microneedle based Transdermal Drug Delivery Systems

R. Parhi, Divya Supriya N
{"title":"Review of Microneedle based Transdermal Drug Delivery Systems","authors":"R. Parhi, Divya Supriya N","doi":"10.37285/ijpsn.2019.12.3.1","DOIUrl":null,"url":null,"abstract":"Transdermal drug delivery (TDD) provides an attractive and alternative drug delivery when compared to oral and other drug delivery as the former route offers several advantages like avoiding pre-systemic first pass metabolism of administered drugs, patient compliance, and avoiding gastric irritation. However, stratum corneum (SC), the upper most layer of skin, limits the permeation of number of drugs because of its barrier property. To breach or bypass this barrier, two approaches namely: chemical and physical are generally used. Physical approaches seem to be better as it does not involve the use of chemicals in the formulations, which could interact, with other component of formulations and more importantly may cause reversible damage to the skin. Microneedle technique is one of the most advanced physical techniques, which can easily by-pass, the SC and allow the drug to reach viable epidermis directly. The needles used in microneedle techniques are in hundreds of micron length range and when applied on skin generally produce little or no pain. The objective of this review is mainly focused on types of microneedles, various materials and fabrication techniques used in the preparation of microneedles. Furthermore, various techniques used in the application of microneedles and mechanism of action are described. In addition, this review also describes commercial products, patents on microneedle technology and recent works carried out on microneedles research and safety aspects of microneedles.","PeriodicalId":14382,"journal":{"name":"International Journal of Pharmaceutical Sciences and Nanotechnology","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutical Sciences and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ijpsn.2019.12.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Transdermal drug delivery (TDD) provides an attractive and alternative drug delivery when compared to oral and other drug delivery as the former route offers several advantages like avoiding pre-systemic first pass metabolism of administered drugs, patient compliance, and avoiding gastric irritation. However, stratum corneum (SC), the upper most layer of skin, limits the permeation of number of drugs because of its barrier property. To breach or bypass this barrier, two approaches namely: chemical and physical are generally used. Physical approaches seem to be better as it does not involve the use of chemicals in the formulations, which could interact, with other component of formulations and more importantly may cause reversible damage to the skin. Microneedle technique is one of the most advanced physical techniques, which can easily by-pass, the SC and allow the drug to reach viable epidermis directly. The needles used in microneedle techniques are in hundreds of micron length range and when applied on skin generally produce little or no pain. The objective of this review is mainly focused on types of microneedles, various materials and fabrication techniques used in the preparation of microneedles. Furthermore, various techniques used in the application of microneedles and mechanism of action are described. In addition, this review also describes commercial products, patents on microneedle technology and recent works carried out on microneedles research and safety aspects of microneedles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微针经皮给药系统研究进展
与口服和其他给药方式相比,经皮给药(TDD)提供了一种有吸引力的替代给药方式,因为前者具有避免给药的全身前第一次代谢、患者依从性和避免胃刺激等优点。然而,角质层(SC),皮肤的最上层,由于其屏障特性,限制了许多药物的渗透。为了突破或绕过这一屏障,通常采用化学和物理两种方法。物理方法似乎更好,因为它不涉及在配方中使用化学物质,这些化学物质可能与配方的其他成分相互作用,更重要的是可能对皮肤造成可逆的损害。微针技术是最先进的物理技术之一,它可以很容易地绕过SC,使药物直接到达活的表皮。微针技术中使用的针头长度在数百微米范围内,当应用于皮肤时通常很少或没有疼痛。本文主要综述了微针的种类、制备微针所用的各种材料和制备技术。此外,还介绍了微针应用中使用的各种技术及其作用机理。此外,本文还介绍了微针的商业产品、微针技术的专利、微针研究的最新工作以及微针的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Recent Advancement of Microneedle Technique in Diagnosis and Therapy of Diseases Development of nanoparticles for the Novel anticancer therapeutic agents for Acute Myeloid Leukemia Formulation Development and Evaluation of Dry Adsorbed Nanoparticles of Curcumin and Piperine Dual Drug Loaded Nanostructured Lipid Carriers Phytochemical Screening, Analgesic and Anti-Inflammatory Activity of the Ethanol Extract of the Cnidoscolus Phyllacanthus Leaves Investigation of In-Vitro Antidiabetic Study, Antioxidant Activity and Anthelminthic Property of Various Extracts of Bitter Cumin Seeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1