An Informative Prior distribution on Functions with Application to Functional Regression

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY Statistica Neerlandica Pub Date : 2023-09-08 DOI:10.1111/stan.12322
C. Abraham
{"title":"An Informative Prior distribution on Functions with Application to Functional Regression","authors":"C. Abraham","doi":"10.1111/stan.12322","DOIUrl":null,"url":null,"abstract":"We provide a prior distribution for a functional parameter so that its trajectories are smooth and vanish on a given subset. This distribution can be interpreted as the distribution of an initial Gaussian process conditioned to be zero on a given subset. Precisely, we show that the initial Gaussian process is the sum of the conditioned process and an independent process with probability one and that all the processes have the same almost sure regularity. This prior distribution is use to provide an interpretable estimate of the coefficient function in the linear scalar‐on‐function regression; by interpretable, we mean a smooth function that may possibly be zero on some intervals. We apply our model in a simulation and real case studies with two different priors for the null region of the coefficient function. In one case, the null region is known to be an unknown single interval. In the other case, it can be any unknown unions of intervals.This article is protected by copyright. All rights reserved.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"21 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12322","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We provide a prior distribution for a functional parameter so that its trajectories are smooth and vanish on a given subset. This distribution can be interpreted as the distribution of an initial Gaussian process conditioned to be zero on a given subset. Precisely, we show that the initial Gaussian process is the sum of the conditioned process and an independent process with probability one and that all the processes have the same almost sure regularity. This prior distribution is use to provide an interpretable estimate of the coefficient function in the linear scalar‐on‐function regression; by interpretable, we mean a smooth function that may possibly be zero on some intervals. We apply our model in a simulation and real case studies with two different priors for the null region of the coefficient function. In one case, the null region is known to be an unknown single interval. In the other case, it can be any unknown unions of intervals.This article is protected by copyright. All rights reserved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
函数的信息先验分布及其在函数回归中的应用
我们提供了一个函数参数的先验分布,使得它的轨迹在给定的子集上是光滑的和消失的。这个分布可以解释为初始高斯过程在给定子集上条件为零的分布。准确地说,我们证明了初始高斯过程是有条件过程和一个概率为1的独立过程的和,并且所有的过程都具有相同的几乎确定的规律性。该先验分布用于提供线性标量函数回归中系数函数的可解释估计;所谓可解释,我们指的是一个平滑函数,它可能在某些区间上为零。我们将我们的模型应用于模拟和实际案例研究中,对系数函数的零区有两种不同的先验。在一种情况下,已知空区域是一个未知的单个区间。在另一种情况下,它可以是任何未知的区间并集。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
期刊最新文献
On global robustness of an adversarial risk analysis solution Heterogeneous dense subhypergraph detection General adapted‐threshold monitoring in discrete environments and rules for imbalanced classes VC‐PCR: A prediction method based on variable selection and clustering Artificial neural network small‐sample‐bias‐corrections of the AR(1) parameter close to unit root
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1