{"title":"Synbiotic edible films enriched with probiotics and prebiotics: A novel approach for improving the quality and shelf life of sliced cheese","authors":"H. G. Ceylan, A. Atasoy","doi":"10.1002/pts.2771","DOIUrl":null,"url":null,"abstract":"This study investigated the effects of fructooligosaccharide (FOS) and inulin (IN) on the properties of sodium caseinate‐based films containing Lactobacillus rhamnosus GG. The optimal formulations were determined and tested for coating sliced cheese during storage. FOS and IN generally increased the thickness and moisture values of the films, while opacity increased with the increase in IN concentration. Tensile strength decreased with FOS and IN, and elongation at break decreased at high prebiotic concentrations. The viability of L. rhamnosus after the drying of the film solution was between 77.67% and 89.91%, and total prebiotic concentration above 2% generally decreased drying stability of L. rhamnosus. The optimal formulations were 0% FOS + 0% IN, 1% FOS + 0% IN and 0% FOS + 1% IN, respectively. These film matrices were found to be suitable carriers for L. rhamnosus. Coating treatments reduced moisture loss, acidity and hardness increase in cheese slices, but decreased luminosity. The probiotic counts in coated cheese were sufficient for therapeutic effect after approximately 20 days.","PeriodicalId":19626,"journal":{"name":"Packaging Technology and Science","volume":"10 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging Technology and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pts.2771","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effects of fructooligosaccharide (FOS) and inulin (IN) on the properties of sodium caseinate‐based films containing Lactobacillus rhamnosus GG. The optimal formulations were determined and tested for coating sliced cheese during storage. FOS and IN generally increased the thickness and moisture values of the films, while opacity increased with the increase in IN concentration. Tensile strength decreased with FOS and IN, and elongation at break decreased at high prebiotic concentrations. The viability of L. rhamnosus after the drying of the film solution was between 77.67% and 89.91%, and total prebiotic concentration above 2% generally decreased drying stability of L. rhamnosus. The optimal formulations were 0% FOS + 0% IN, 1% FOS + 0% IN and 0% FOS + 1% IN, respectively. These film matrices were found to be suitable carriers for L. rhamnosus. Coating treatments reduced moisture loss, acidity and hardness increase in cheese slices, but decreased luminosity. The probiotic counts in coated cheese were sufficient for therapeutic effect after approximately 20 days.
期刊介绍:
Packaging Technology & Science publishes original research, applications and review papers describing significant, novel developments in its field.
The Journal welcomes contributions in a wide range of areas in packaging technology and science, including:
-Active packaging
-Aseptic and sterile packaging
-Barrier packaging
-Design methodology
-Environmental factors and sustainability
-Ergonomics
-Food packaging
-Machinery and engineering for packaging
-Marketing aspects of packaging
-Materials
-Migration
-New manufacturing processes and techniques
-Testing, analysis and quality control
-Transport packaging