M. Saheb, J. Mertz, E. Colas, O. Rozenbaum, A. Chabas, A. Michelin, A. Verney-Carron, J. Sizun
{"title":"Multiscale characterization of limestone used on monuments of cultural heritage","authors":"M. Saheb, J. Mertz, E. Colas, O. Rozenbaum, A. Chabas, A. Michelin, A. Verney-Carron, J. Sizun","doi":"10.1557/OPL.2014.709","DOIUrl":null,"url":null,"abstract":"In the context of the preservation of the cultural heritage, it is important to understand the alteration mechanisms of the materials constituting historical monuments and architecture. Limestone especially is widely used in many French monuments exposed to an urban aggressive atmosphere affecting their durability. To better understand the alteration mechanisms, the first step is to characterize at different scales the stone material properties. In one hand, the pore network that drives the fluids transfer inside the materials was characterized. And on the other hand, the alteration layer formed on several decades aged materials was studied. Results on this fine-scale characterization are discussed.","PeriodicalId":18884,"journal":{"name":"MRS Proceedings","volume":"42 1","pages":"309-317"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/OPL.2014.709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In the context of the preservation of the cultural heritage, it is important to understand the alteration mechanisms of the materials constituting historical monuments and architecture. Limestone especially is widely used in many French monuments exposed to an urban aggressive atmosphere affecting their durability. To better understand the alteration mechanisms, the first step is to characterize at different scales the stone material properties. In one hand, the pore network that drives the fluids transfer inside the materials was characterized. And on the other hand, the alteration layer formed on several decades aged materials was studied. Results on this fine-scale characterization are discussed.