{"title":"Response surface methodology (RSM): An overview to analyze multivariate data","authors":"Rupak Kumar, Meega Reji","doi":"10.18231/j.ijmr.2022.042","DOIUrl":null,"url":null,"abstract":"In recent years, the fascinating range of Response surface methodology (RSM) applications has captured the interest of many researchers and engineers worldwide. RSM is entirely based on well-known regression principles and variance analysis principles that enable the user to improve, develop and optimize the process or product under study. An overview of the theoretical principles of RSM, the experimental strategy and its tools and components, along with the applications and pros and cons, are described in this paper. Some of the widely used experimental designs of RSM compared in terms of its characteristics and efficiency are included, which helps to point out the importance of design of experiments (DOE) in optimization using RSM. The live demonstrations of a few optimization examples using response surface methodology in different research manuscripts included in this paper also provide a better understanding of the characteristics of RSM in different scenarios.","PeriodicalId":13428,"journal":{"name":"Indian Journal of Microbiology Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18231/j.ijmr.2022.042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In recent years, the fascinating range of Response surface methodology (RSM) applications has captured the interest of many researchers and engineers worldwide. RSM is entirely based on well-known regression principles and variance analysis principles that enable the user to improve, develop and optimize the process or product under study. An overview of the theoretical principles of RSM, the experimental strategy and its tools and components, along with the applications and pros and cons, are described in this paper. Some of the widely used experimental designs of RSM compared in terms of its characteristics and efficiency are included, which helps to point out the importance of design of experiments (DOE) in optimization using RSM. The live demonstrations of a few optimization examples using response surface methodology in different research manuscripts included in this paper also provide a better understanding of the characteristics of RSM in different scenarios.