Nested Models and Model Uncertainty

Alexander Kriwoluzky, C. Stoltenberg
{"title":"Nested Models and Model Uncertainty","authors":"Alexander Kriwoluzky, C. Stoltenberg","doi":"10.1111/sjoe.12134","DOIUrl":null,"url":null,"abstract":"Uncertainty about the appropriate choice among nested models is a central concern for optimal policy when policy prescriptions from those models differ. The standard procedure is to specify a prior over the parameter space ignoring the special status of some sub-models, e.g. those resulting from zero restrictions. This is especially problematic if a model's generalization could be either true progress or the latest fad found to fit the data. We propose a procedure that ensures that the specified set of sub-models is not discarded too easily and thus receives no weight in determining optimal policy. We find that optimal policy based on our procedure leads to substantial welfare gains compared to the standard practice.","PeriodicalId":11754,"journal":{"name":"ERN: Other Macroeconomics: Aggregative Models (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Macroeconomics: Aggregative Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/sjoe.12134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Uncertainty about the appropriate choice among nested models is a central concern for optimal policy when policy prescriptions from those models differ. The standard procedure is to specify a prior over the parameter space ignoring the special status of some sub-models, e.g. those resulting from zero restrictions. This is especially problematic if a model's generalization could be either true progress or the latest fad found to fit the data. We propose a procedure that ensures that the specified set of sub-models is not discarded too easily and thus receives no weight in determining optimal policy. We find that optimal policy based on our procedure leads to substantial welfare gains compared to the standard practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌套模型和模型不确定性
当来自嵌套模型的策略处方不同时,关于嵌套模型之间适当选择的不确定性是最优策略的主要关注点。标准的过程是在参数空间上指定一个先验,忽略一些子模型的特殊状态,例如那些由零限制产生的子模型。如果一个模型的概括既可能是真正的进步,也可能是最新发现的适合数据的流行趋势,这就尤其成问题了。我们提出了一个过程,以确保指定的子模型集不会太容易被丢弃,从而在确定最优策略时没有权重。我们发现,与标准做法相比,基于我们程序的最优政策可以带来可观的福利收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Economic Hysteresis and its Modeling Credit Horizons Estimation of Heuristic Switching in Behavioral Macroeconomic Models Coupled Climate-Economy-Ecology (CoCEB) Modeling: A Dynamic Approach Post Keynesian Economics Is Based on Joan Robinson’s Many Canards About Supposed Gaping Holes in Keynes’s Theory: The Real Problem Is Gaping Holes and Gross Ignorance in the Post Keynesian Understanding of Keynes’s a Treatise on Probability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1