Shock-Loading-Based Reliability Modeling with Dependent Degradation Processes and Random Shocks

IF 0.9 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Reliability Quality and Safety Engineering Pub Date : 2022-06-27 DOI:10.1142/s0218539322500024
Rui Wang, Mengmeng Zhu
{"title":"Shock-Loading-Based Reliability Modeling with Dependent Degradation Processes and Random Shocks","authors":"Rui Wang, Mengmeng Zhu","doi":"10.1142/s0218539322500024","DOIUrl":null,"url":null,"abstract":"In general, a system deteriorates due to internal physical degradation and external random shocks. Previous studies mainly focused on establishing dependent competing risk models to evaluate mutual effects of degradation processes and random shocks affecting system health. However, there is a lack of consideration about the magnitude of impacts caused by random shocks on degradation processes. Thus, a shock-loading-based degradation model is proposed to classify the magnitude of impacts from random shocks on degradation processes based on the threshold of the cumulative shock loading. Copula methods are utilized to derive joint reliability function from multiple marginal distributions of degradation processes. Two numerical examples are utilized to demonstrate the reliability prediction performance of the proposed model. First, a simulated example is used. The second example employs the turbofan engine degradation data from the NASA Prognostic Data Repository to show the performance of the proposed shock-loading-based degradation process and its corresponding system reliability model.","PeriodicalId":45573,"journal":{"name":"International Journal of Reliability Quality and Safety Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Reliability Quality and Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218539322500024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In general, a system deteriorates due to internal physical degradation and external random shocks. Previous studies mainly focused on establishing dependent competing risk models to evaluate mutual effects of degradation processes and random shocks affecting system health. However, there is a lack of consideration about the magnitude of impacts caused by random shocks on degradation processes. Thus, a shock-loading-based degradation model is proposed to classify the magnitude of impacts from random shocks on degradation processes based on the threshold of the cumulative shock loading. Copula methods are utilized to derive joint reliability function from multiple marginal distributions of degradation processes. Two numerical examples are utilized to demonstrate the reliability prediction performance of the proposed model. First, a simulated example is used. The second example employs the turbofan engine degradation data from the NASA Prognostic Data Repository to show the performance of the proposed shock-loading-based degradation process and its corresponding system reliability model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于依赖退化过程和随机冲击的冲击载荷可靠性建模
一般来说,系统的退化是由于内部的物理退化和外部的随机冲击。以往的研究主要集中在建立依赖竞争风险模型来评估退化过程和随机冲击对系统健康的相互影响。然而,缺乏对随机冲击对退化过程影响程度的考虑。因此,提出了一种基于冲击载荷的退化模型,该模型基于累积冲击载荷阈值对随机冲击对退化过程的影响程度进行分类。利用Copula方法从退化过程的多个边际分布中推导出联合可靠度函数。通过两个算例验证了该模型的可靠性预测性能。首先,使用了一个模拟示例。第二个示例使用来自NASA预测数据存储库的涡扇发动机退化数据来展示所提出的基于冲击载荷的退化过程及其相应的系统可靠性模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
25.00%
发文量
26
期刊介绍: IJRQSE is a refereed journal focusing on both the theoretical and practical aspects of reliability, quality, and safety in engineering. The journal is intended to cover a broad spectrum of issues in manufacturing, computing, software, aerospace, control, nuclear systems, power systems, communication systems, and electronics. Papers are sought in the theoretical domain as well as in such practical fields as industry and laboratory research. The journal is published quarterly, March, June, September and December. It is intended to bridge the gap between the theoretical experts and practitioners in the academic, scientific, government, and business communities.
期刊最新文献
Introducing the detailed semantic interface description to support a modular safety approval of automated vehicles – S 2 I 2 A SaaS Concept Based Shopping Center Fire Risk Assessment Model for the Safety Management Applications OSS Sustainability Assessment Based on the Deep Learning Considering Effort Wiener Process Data A Study on the Prediction of COVID-19 Confirmed Cases Using Deep Learning and AdaBoost-Bi-LSTM model Assessment of emergency risk management and resilience engineering at management levels of a high hazard industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1